smoothAPA {fungible} | R Documentation |
Smooth a NPD R matrix to PD using the Alternating Projection Algorithm
Description
Smooth a Non positive defnite (NPD) correlation matrix to PD using the Alternating Projection Algorithm with Dykstra's correction via Theory described in Higham 2002.
Usage
smoothAPA(R, delta = 1e-06, fixR = NULL, Wghts = NULL, maxTries = 1000)
Arguments
R |
A p x p indefinite matrix. |
delta |
Desired value of the smallest eigenvalue of smoothed matrix, RAPA. (Default = 1e-06). |
fixR |
User-supplied integer list that instructs the program to constrain elements in RAPA to equal corresponding elements in R. For example if fixR = c(1,2) then smoothed matrix, RAPA[1:2,1:2] = R[1:2,1:2]. Default (fixR = NULL). |
Wghts |
A p-length vector of weights for differential variable weighting. Default (Wghts = NULL). |
maxTries |
Maximum number of iterations in the alternating projections algorithm. Default (maxTries = 1000). |
Value
RAPA |
A smoothed matrix. |
delta |
User-supplied delta value. |
Wghts |
User-supplied weight vector. |
fixR |
User-supplied integer list that instructs the program to constrain elements in RAPA to equal corresponding elements in R. |
convergence |
A value of 0 indicates that the algorithm located a feasible solution. A value of 1 indicates that no feasible solution was located within maxTries. |
Author(s)
Niels Waller
Examples
data(BadRKtB)
###################################################################
## Replicate analyses in Table 2 of Knol and ten Berge (1989).
###################################################################
## n1 = 0,1
out<-smoothAPA(R = BadRKtB, delta = .0, fixR = NULL, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 2
out<-smoothAPA(R = BadRKtB, fixR =c(1,2), delta=.0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 4
out<-smoothAPA(R = BadRKtB, fixR = 1:4, delta=.0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 5
out<-smoothAPA(R = BadRKtB, fixR = 1:5, delta=0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
###################################################################
## Replicate analyses in Table 3 of Knol and ten Berge (1989).
###################################################################
## n1 = 0,1
out<-smoothAPA(R = BadRKtB, delta = .05, fixR = NULL, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 2
out<-smoothAPA(R = BadRKtB, fixR =c(1,2), delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 4
out<-smoothAPA(R = BadRKtB, fixR = 1:4, delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 5
out<-smoothAPA(R = BadRKtB, fixR = 1:5, delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
###################################################################
## This example illustrates differential variable weighting.
##
## Imagine a scenerio in which variables 1 & 2 were collected with
## 5 times more subjects than variables 4 - 6 then . . .
###################################################################
## n1 = 2
out<-smoothAPA(R = BadRKtB, delta=.0, fixR = NULL, Wghts = c(5, 5, rep(1,4)), maxTries=1e5)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val