rPCA {fungible} | R Documentation |
Generate a Correlation Matrix from a Truncated PCA Loadings Matrix.
Description
This function generates a random (or possibly unique) correlation matrix (R) from an unrotated or orthogonally rotated PCA loadings matrix via a modified alternating projections algorithm.
Usage
rPCA(
F,
epsMax = 1e-18,
maxit = 2000,
Seed = NULL,
InitP2 = 2,
Eigs = NULL,
PrintLevel = 1
)
Arguments
F |
(Matrix) A p (variables) by k (components) PCA loadings matrix. F can equal either an unrotated or an orthogonally rotated loadings matrix. |
epsMax |
(Scalar) A small number used to evaluate function convergence. Default (epsMax = 1E-18). |
maxit |
(Integer) An integer that specifies the maximum number of iterations of the modified alternating projections algorithm (APA). |
Seed |
(Integer) A user-defined starting seed for the random number generator. If Seed = NULL then rPCA will generate a random starting seed. Setting Seed to a positive integer will generate reproducible results. Default (Seed = NULL) |
InitP2 |
(Integer) The method used to initiate the remaining columns of the
truncated principal components solution. If |
Eigs |
(Vector) Under some conditions, |
PrintLevel |
(Integer) If PrintLevel = 0 no output will be printed (choose this option for Monte Carlo simulations). If PrintLevel = 1 the program will print the APA convergence status and the number of iterations used to achieve convergence. If PrintLevel = 2 then rPCA will print the iteration convergence history of the modified APA algorithm. Default (PrintLevel = 1). |
Value
-
R (Matrix) A p by p correlation matrix that generates the desired PCA loadings.
-
Tmat (Matrix) A k by k orthogonal rotation matrix that will rotate the unrotated PCA loadings matrix, P1, to F (if F is an orthogonally rotated loadings matrix).
-
P1 (Matrix) The p by k unrotated PCA loadings matrix that is associated with F.
-
Fhat (Matrix) The p by k estimated (and possibly rotated) PCA loadings matrix from the simulated matrix R.
-
error (Logical) A logical that indicates whether F is a legitimate PCA loadings matrix.
-
Lambda (Vector) The sorted eigenvalues of R.
-
iterHx (Vector) Criterion (i.e., fit) values for for each iteration of the modified APA algorithm.
-
converged (Logical) A logical that signifies function convergence.
-
Seed (Integer) Either a user-defined or function generated starting seed for the random number generator.
Author(s)
Niels G. Waller (nwaller@umn.edu)
References
Escalante, R. and Raydan, M. (2011). Alternating projection methods. Society for Industrial and Applied Mathematics.
ten Berge, J. M. and Kiers, H. A. (1999). Retrieving the correlation matrix from a truncated PCA solution: The inverse principal component problem. Psychometrika, 64(3), 317–324.
Examples
# External PCA function ---
# used to check results
PCA <- function(R, k = NULL){
if(is.null(k)) k <- ncol(R)
VLV <- eigen(R)
V <- VLV$vectors
L <- VLV$values
if( k > 1){
P <- V[, 1:k] %*% diag(L[1:k]^.5)
}
else{
P <- as.matrix(V[, 1], drop=False) * L[1]^.5
}
Psign <- sign(apply(P, 2, sum))
if(k > 1) Psign = diag(Psign)
P <- P %*% Psign
P
}#END PCA
## Generate Desired Population rotated PCA loadings matrix
## Example = 1
k = 2
F <- matrix(0, 8, 2)
F[1:4, 1] <- seq(.75, .72, length= 4)
F[5:8, 2] <- seq(.65, .62, length= 4)
F[1,2] <- .1234
F[8,1] <- .4321
colnames(F) <- paste0("F", 1:k)
(F)
## Run Example 1
pout <- rPCA(F,
maxit = 5000,
Seed = 1,
epsMax = 1E-18,
PrintLevel = 1)
pout$converged
eigen(pout$R)$values
if(pout$error == FALSE & pout$converged){
Fhat <- pout$Fhat
cat("\nPCA Loadings\n")
( round( cbind(F,Fhat ), 5) )
}
## Example = 2
## Single component example from Widaman 2018
k = 1
F <- matrix(rep(c(.8,.6, .4), each = 3 ), nrow = 9, ncol = 1)
colnames(F) <- paste0("F", 1:k)
(F)
## Run Example 2
pout <- rPCA(F,
maxit = 5000,
Seed = 1,
epsMax = 1E-18,
PrintLevel = 1)
pout$converged
pout$Fhat
eigen(pout$R)$values
if(pout$error == FALSE & pout$converged){
Fhat <- pout$Fhat
cat("\nPCA Loadings\n")
( round( cbind(F,Fhat ), 5) )
}
## Example 3 ----
## 2 Component example from Goldberg and Velicer (2006).
k = 2
F = matrix(c( .18, .75,
.65, .19,
.12, .69,
.74, .06,
.19, .80,
.80, .14,
-.05, .65,
.71, .02), 8, 2, byrow=TRUE)
colnames(F) <- paste0("F", 1:k)
(F)
## Run Example 3
pout <- rPCA(F,
maxit = 5000,
Seed = 1,
epsMax = 1E-18,
PrintLevel = 1)
pout$converged
eigen(pout$R)$values
if(pout$error == FALSE & pout$converged){
Fhat <- pout$Fhat
cat("\nPCA Loadings\n")
( round( cbind(F,Fhat ), 5) )
#
#
## Example 4
#
SEED = 4321
set.seed(SEED)
k= 3
## Generate eigenvalues for example R matrix
L7 <- eigGen(nDimensions = 7,
nMaj = 3,
PrcntMajor = .85,
threshold = .8)
## Scree Plot
plot(1:7, L7,
type = "b",
ylim = c(0,4),
main = "Scree Plot for R",
ylab = "Eigenvalues",
xlab = "Dimensions")
## Generate R
R <- rGivens(eigs=L7, Seed = SEED)$R
print( R, digits = 4)
#Extract loadings for 3 principal components
F <- PCA(R, k = k)
# rotate loadings with varimax to examine underlying structure
print( round(varimax(F)$loadings[], 3) )
## run rPCA with user-defined eigenvalues
rout <- rPCA(F,
epsMax = 1e-20,
maxit = 25000,
Seed = SEED,
InitP2 = 1,
Eigs = L7,
PrintLevel = 1)
## Compute PCA on generated R
Fhat <- PCA(rout$R, k = 3)
#
## align factors
Fhat <- fungible::faAlign(F, Fhat)$F2
## Compare solutions
print( round( cbind(F, Fhat), 5) )
## Compare Eigenvalues
print( cbind(L7, eigen(rout$R)$values ), digits=8)
#
## Compare R matrices: 8 digit accuracy
print( round(R - rout$R, 8) )
}