monte1 {fungible} | R Documentation |
Simulate Multivariate Non-normal Data by Vale & Maurelli (1983) Method
Description
Function for simulating multivariate nonnormal data by the methods described by Fleishman (1978) and Vale & Maurelli (1983).
Usage
monte1(seed, nvar, nsub, cormat, skewvec, kurtvec)
Arguments
seed |
An integer to be used as the random number seed. |
nvar |
Number of variables to simulate. |
nsub |
Number of simulated subjects (response vectors). |
cormat |
The desired correlation matrix. |
skewvec |
A vector of indicator skewness values. |
kurtvec |
A vector of indicator kurtosis values. |
Value
data |
The simulated data. |
call |
The call. |
nsub |
Number of subjects. |
nvar |
Number of variables. |
cormat |
The desired correlation matrix. |
skewvec |
The desired indicator skewness values. |
kurtvec |
The desired indicator kurtosis values. |
seed |
The random number seed. |
Author(s)
Niels Waller
References
Fleishman, A. I (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521-532.
Olvera Astivia, O. L. & Zumbo, B. D. (2018). On the solution multiplicity of the Fleishman method and its impact in simulation studies. British Journal of Mathematical and Statistical Psychology, 71 (3), 437-458.
Vale, D. C., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465-471.
See Also
monte
, summary.monte
,
summary.monte1
Examples
## Generate dimensional data for 4 variables.
## All correlations = .60; all variable
## skewness = 1.75;
## all variable kurtosis = 3.75
cormat <- matrix(.60,4,4)
diag(cormat) <- 1
nontaxon.dat <- monte1(seed = 123, nsub = 100000, nvar = 4, skewvec = rep(1.75, 4),
kurtvec = rep(3.75, 4), cormat = cormat)
print(cor(nontaxon.dat$data), digits = 3)
print(apply(nontaxon.dat$data, 2, skew), digits = 3)
print(apply(nontaxon.dat$data, 2, kurt), digits = 3)