faLocalMin {fungible} | R Documentation |
Investigate local minima in faMain objects
Description
Compute pairwise root mean squared deviations (RMSD)
among rotated factor patterns in an faMain
object.
Prior to computing the RMSD values, each pair of solutions is aligned to
the first member of the pair. Alignment is accomplished using the
Hungarian algorithm as described in faAlign
.
Usage
faLocalMin(fout, Set = 1, HPthreshold = 0.1, digits = 5, PrintLevel = 1)
Arguments
fout |
(Object from class |
Set |
(Integer) The index of the solution set (i.e., the collection of
rotated factor patterns with a common complexity value) from an
|
HPthreshold |
(Scalar) A number between [0, 1] that defines the
hyperplane threshold. Factor pattern elements below |
digits |
(Integer) Specifies the number of significant
digits in the printed output. Default |
PrintLevel |
(Integer) Determines the level of printed output. PrintLevel =
|
Details
Compute pairwise RMSD values among rotated factor patterns from
an faMain
object.
Value
faLocalMin
function will produce the following output.
-
rmsdTable: (Matrix) A table of
RMSD
values for each pair of rotated factor patterns in solution setSet
. -
Set: (Integer) The index of the user-specified solution set.
-
complexity.val (Numeric): The common complexity value for all members in the user-specified solution set.
-
HPcount: (Integer) The hyperplane count for each factor pattern in the solution set.
Author(s)
Niels Waller
See Also
Other Factor Analysis Routines:
BiFAD()
,
Box26
,
GenerateBoxData()
,
Ledermann()
,
SLi()
,
SchmidLeiman()
,
faAlign()
,
faEKC()
,
faIB()
,
faMB()
,
faMain()
,
faScores()
,
faSort()
,
faStandardize()
,
faX()
,
fals()
,
fapa()
,
fareg()
,
fsIndeterminacy()
,
orderFactors()
,
print.faMB()
,
print.faMain()
,
promaxQ()
,
summary.faMB()
,
summary.faMain()
Examples
## Not run:
## Generate Population Model and Monte Carlo Samples ####
sout <- simFA(Model = list(NFac = 5,
NItemPerFac = 5,
Model = "orthogonal"),
Loadings = list(FacLoadDist = "fixed",
FacLoadRange = .8),
MonteCarlo = list(NSamples = 100,
SampleSize = 500),
Seed = 655342)
## Population EFA loadings
(True_A <- sout$loadings)
## Population Phi matrix
sout$Phi
## Compute EFA on Sample 67 ####
fout <- faMain (R = sout$Monte$MCData[[67]],
numFactors = 5,
targetMatrix = sout$loadings,
facMethod = "fals",
rotate= "cfT",
rotateControl = list(numberStarts = 50,
standardize="CM",
kappa = 1/25),
Seed=3366805)
## Summarize output from faMain
summary(fout, Set = 1, DiagnosticsLevel = 2, digits=4)
## Investigate Local Solutions
LMout <- faLocalMin(fout,
Set = 1,
HPthreshold = .15,
digits= 5,
PrintLevel = 1)
## Print hyperplane count for each factor pattern
## in the solution set
LMout$HPcount
## End(Not run)