faEKC {fungible} | R Documentation |
Calculate Reference Eigenvalues for the Empirical Kaiser Criterion
Description
Calculate Reference Eigenvalues for the Empirical Kaiser Criterion
Usage
faEKC(R = NULL, NSubj = NULL, Plot = FALSE)
Arguments
R |
Input correlation matrix. |
NSubj |
Number of subjects (observations) used to create R. |
Plot |
(logical). If |
Value
ljEKC,
ljEKC1,
dimensions The estimated number of common factors.
Author(s)
Niels Waller
References
Braeken, J. & Van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450-466.
See Also
Other Factor Analysis Routines:
BiFAD()
,
Box26
,
GenerateBoxData()
,
Ledermann()
,
SLi()
,
SchmidLeiman()
,
faAlign()
,
faIB()
,
faLocalMin()
,
faMB()
,
faMain()
,
faScores()
,
faSort()
,
faStandardize()
,
faX()
,
fals()
,
fapa()
,
fareg()
,
fsIndeterminacy()
,
orderFactors()
,
print.faMB()
,
print.faMain()
,
promaxQ()
,
summary.faMB()
,
summary.faMain()
Examples
data(AmzBoxes)
AmzBox20<- GenerateBoxData(XYZ = AmzBoxes[,2:4],
BoxStudy = 20)$BoxData
RAmzBox20 <- cor(AmzBox20)
EKCout <- faEKC(R = RAmzBox20,
NSubj = 98,
Plot = TRUE)