faAlign {fungible} | R Documentation |
Align the columns of two factor loading matrices
Description
Align factor loading matrices across solutions using the Hungarian algorithm to locate optimal matches. faAlign will match the factors of F2 (the input matrix) to those in F1 (the target matrix) to minimize a least squares discrepancy function or to maximize factor congruence coefficients (i.e., vector cosines).
Usage
faAlign(F1, F2, Phi2 = NULL, MatchMethod = "LS")
Arguments
F1 |
target Factor Loadings Matrix. |
F2 |
input Factor Loadings Matrix. F2 will be aligned with the target matrix, F1. |
Phi2 |
optional factor correlation matrix for F2 (default = NULL). |
MatchMethod |
"LS" (Least Squares) or "CC" (congruence coefficients). |
Value
F2 |
re-ordered and reflected loadings of F2. |
Phi2 |
reordered and reflected factor correlations. |
FactorMap |
a 2 x k matrix (where k is the number of columns of F1) structured such that row 1: the original column order of F2; row 2: the sorted column order of F2. |
UniqueMatch |
(logical) indicates whether a unique match was found. |
MatchMethod |
"LS" (least squares) or "CC" (congruence coefficients, i.e., cosines). |
CC |
Congruence coefficients for the matched factors. |
LS |
Root-mean-squared-deviations (least squares criterion) for the matched factors. |
Dsgn |
The Diagonal Sign Matrix that reflects the matched factors to have positive salient loadings. |
Note
The Hungarian algorithm is implemented with the clue (Cluster Ensembles, Hornik, 2005) package. See Hornik K (2005). A CLUE for CLUster Ensembles. Journal of Statistical Software, 14(12). doi: 10.18637/jss.v014.i12 (URL: http://doi.org/10.18637/jss.v014.i12).
Author(s)
Niels Waller
References
Kuhn, H. W. (1955). The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2, 83-97.
Kuhn, H. W. (1956). Variants of the Hungarian method for assignment problems. Naval Research Logistics Quarterly, 3, 253-258.
Papadimitriou, C. & Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs: Prentice Hall.
See Also
Other Factor Analysis Routines:
BiFAD()
,
Box26
,
GenerateBoxData()
,
Ledermann()
,
SLi()
,
SchmidLeiman()
,
faEKC()
,
faIB()
,
faLocalMin()
,
faMB()
,
faMain()
,
faScores()
,
faSort()
,
faStandardize()
,
faX()
,
fals()
,
fapa()
,
fareg()
,
fsIndeterminacy()
,
orderFactors()
,
print.faMB()
,
print.faMain()
,
promaxQ()
,
summary.faMB()
,
summary.faMain()
Examples
# This example demonstrates the computation of
# non-parametric bootstrap confidence intervals
# for rotated factor loadings.
library(GPArotation)
data(HS9Var)
HS9 <- HS9Var[HS9Var$school == "Grant-White",7:15]
# Compute an R matrix for the HSVar9 Mental Abilities Data
R.HS9 <- cor(HS9)
varnames <- c( "vis.per", "cubes",
"lozenges", "paragraph.comp",
"sentence.comp","word.mean",
"speed.add", "speed.count.dots",
"speed.discr")
# Extract and rotate a 3-factor solution
# via unweighted least squares factor extraction
# and oblimin rotation.
NFac <- 3
NVar <- 9
B <- 200 # Number of boostrap samples
NSubj <- nrow(HS9)
# Unrotated 3 factor uls solution
F3.uls <- fals(R = R.HS9, nfactors = NFac)
# Rotate via oblimin
F3.rot <- oblimin(F3.uls$loadings,
gam = 0,
normalize = FALSE)
F3.loadings <- F3.rot$loadings
F3.phi <- F3.rot$Phi
# Reflect factors so that salient loadings are positive
Dsgn <- diag(sign(colSums(F3.loadings^3)))
F3.loadings <- F3.loadings %*% Dsgn
F3.phi <- Dsgn %*% F3.phi %*% Dsgn
rownames(F3.loadings) <- varnames
colnames(F3.loadings) <- paste0("f", 1:3)
colnames(F3.phi) <- rownames(F3.phi) <- paste0("f", 1:3)
cat("\nOblimin rotated factor loadings for 9 Mental Abilities Variables")
print( round(F3.loadings, 2))
cat("\nFactor correlation matrix")
print( round( F3.phi, 2))
# Declare variables to hold bootstrap output
Flist <- Philist <- as.list(rep(0, B))
UniqueMatchVec <- rep(0, B)
rows <- 1:NSubj
# Analyze bootstrap samples and record results
for(i in 1:B){
cat("\nWorking on sample ", i)
set.seed(i)
# Create bootstrap sanples
bsRows <- sample(rows, NSubj, replace= TRUE)
Fuls <- fals(R = cor(HS9[bsRows, ]), nfactors = NFac)
# rotated loadings
Fboot <- oblimin(Fuls$loadings,
gam = 0,
normalize = FALSE)
out <- faAlign(F1 = F3.loadings,
F2 = Fboot$loadings,
MatchMethod = "LS")
Flist[[i]] <- out$F2 # aligned version of Fboot$loadings
UniqueMatchVec[i] <- out$UniqueMatch
}
cat("\nNumber of Unique Matches: ",
100*round(mean(UniqueMatchVec),2),"%\n")
# Make a 3D array from list of matrices
arr <- array( unlist(Flist) , c(NVar, NFac, B) )
# Get quantiles of factor elements over third dimension (samples)
F95 <- apply( arr , 1:2 , quantile, .975 )
F05 <- apply( arr , 1:2 , quantile, .025 )
Fse <- apply( arr , 1:2, sd )
cat("\nUpper Bound 95% CI\n")
print( round(F95,3))
cat("\n\nLower Bound 95% CI\n")
print( round(F05,3))
# plot distribution of bootstrap estimates
# for example element
hist(arr[5,1,], xlim=c(.4,1),
main = "Bootstrap Distribution for F[5,1]",
xlab = "F[5,1]")
print(round (F3.loadings, 2))
cat("\nStandard Errors")
print( round( Fse, 2))