Omega {fungible}R Documentation

Compute Omega hierarchical

Description

This function computes McDonald's Omega hierarchical to determine the proportions of variance (for a given test) associated with the latent factors and with the general factor.

Usage

Omega(lambda, genFac = 1, digits = NULL)

Arguments

lambda

(Matrix) A factor pattern matrix to be analyzed.

genFac

(Scalar, Vector) Which column(s) contains the general factor(s). The default value is the first column.

digits

(Scalar) The number of digits to round all output to.

Details

Value

Author(s)

References

McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ:Erlbaum.

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological Methods, 21(2), 137.

Zinbarg, R.E., Revelle, W., Yovel, I., & Li. W. (2005). Cronbach's Alpha, Revelle's Beta, McDonald's Omega: Their relations with each and two alternative conceptualizations of reliability. Psychometrika. 70, 123-133. https://personality-project.org/revelle/publications/zinbarg.revelle.pmet.05.pdf

Examples

## Create a bifactor structure
bifactor <- matrix(c(.21, .49, .00, .00,
                     .12, .28, .00, .00,
                     .17, .38, .00, .00,
                     .23, .00, .34, .00,
                     .34, .00, .52, .00,
                     .22, .00, .34, .00,
                     .41, .00, .00, .42,
                     .46, .00, .00, .47,
                     .48, .00, .00, .49),
                   nrow = 9, ncol = 4, byrow = TRUE)

## Compute Omega
Out1 <- Omega(lambda = bifactor)


[Package fungible version 2.4.4 Index]