Ledermann {fungible} | R Documentation |
Ledermann's inequality for factor solution identification
Description
Ledermann's (1937) inequality to determine either (a) how many factor indicators are needed to uniquely estimate a user-specified number of factors or (b) how many factors can be uniquely estimated from a user-specified number of factor indicators. See the Details section for more information
Usage
Ledermann(numFactors = NULL, numVariables = NULL)
Arguments
numFactors |
(Numeric) Determine the number of variables needed
to uniquely estimate the [user-specifed] number of factors. Defaults
to |
numVariables |
(Numeric) Determine the number of factors that can be
uniquely estimated from the [user-specifed] number of variables Defaults
to |
Details
The user will specified either (a) numFactors
or (b)
numVariables
. When one value is specified, the obtained estimate
for the other may be a non-whole number. If estimating the number of
required variables, the obtained estimate is rounded up
(using ceiling
). If estimating the number of factors,
the obtained estimate is rounded down (using floor
). For example,
if numFactors = 2
, roughly 4.56 variables are required for an identified
solution. However, the function returns an estimate of 5.
For the relevant equations, see Thurstone (1947, p. 293) Equations 10 and 11.
Value
-
numFactors (Numeric) Given the inputs, the number of factors to be estimated from the
numVariables
number of factor indicators. -
numVariables (Numeric) Given the inputs, the number of variables needed to estimate
numFactorso
.
Author(s)
Casey Giordano
References
Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple-factor analysis. Psychometrika, 2(2), 85-93.
Thurstone, L. L. (1947). Multiple-factor analysis; a development and expansion of The Vectors of Mind.
See Also
Other Factor Analysis Routines:
BiFAD()
,
Box26
,
GenerateBoxData()
,
SLi()
,
SchmidLeiman()
,
faAlign()
,
faEKC()
,
faIB()
,
faLocalMin()
,
faMB()
,
faMain()
,
faScores()
,
faSort()
,
faStandardize()
,
faX()
,
fals()
,
fapa()
,
fareg()
,
fsIndeterminacy()
,
orderFactors()
,
print.faMB()
,
print.faMain()
,
promaxQ()
,
summary.faMB()
,
summary.faMain()
Examples
## To estimate 3 factors, how many variables are needed?
Ledermann(numFactors = 3,
numVariables = NULL)
## Provided 10 variables are collected, how many factors
## can be estimated?
Ledermann(numFactors = NULL,
numVariables = 10)