trace_all_levels {flowTraceR} | R Documentation |
Trace common and unique identifications between different software outputs for all levels
Description
Identifications of two input data frames are compared and categorized in unique and common entries for each level.
Usage
trace_all_levels(
input_df1,
input_df2,
analysis_name1 = "input_df1",
analysis_name2 = "input_df2",
filter_unknown_mods = TRUE
)
Arguments
input_df1 |
A tibble with flowTraceR's standardized precursor, modified peptide and proteinGroup level information. |
input_df2 |
A tibble with flowTraceR's standardized precursor, modified peptide and proteinGroup level information. |
analysis_name1 |
output tibble name for input_df1 - default is |
analysis_name2 |
output tibble name for input_df2 - default is |
filter_unknown_mods |
Logical value, default is TRUE. If TRUE, unknown modifications are filtered out - requires "traceR_precursor_unknownMods" or "traceR_mod.peptides_unknownMods" column. |
Details
Based on flowTraceR's standardized output format two software outputs can be compared and categorized into common and unique identifications - for precursor, modified peptide and proteinGroup level.
Value
This function returns a list with both original submitted tibbles
- input_df1 and input_df2 - with the following new columns:
traceR_traced_precursor - categorization on precursor level in common and unique entries.
traceR_traced_mod.peptides - categorization on modified peptide level in common and unique entries.
traceR_traced_proteinGroups - categorization on proteinGroups level in common and unique entries.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tibble)
# DIA-NN example data
diann <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "P02671", "Q92496", "DummyProt"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "RLEVDIDIK",
"EGIVEYPR", "ALTDM(DummyModification)PQMK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE, TRUE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2",
"EGIVEYPR2", "ALTDM(DummyModification)PQMK3" ),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE, TRUE)
)
# Spectronaut example data
spectronaut <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "Q02985", "P02671"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "EGIVEYPR", "M(UniMod:35)KPVPDLVPGNFK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "EGIVEYPR2", "M(UniMod:35)KPVPDLVPGNFK2"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE)
)
# trace all levels in one step
traced_all <- trace_all_levels(
input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
filter_unknown_mods = TRUE
)