collinearity {fixest} | R Documentation |
Collinearity diagnostics for fixest
objects
Description
In some occasions, the optimization algorithm of femlm
may fail to converge, or
the variance-covariance matrix may not be available. The most common reason of why
this happens is collinearity among variables. This function helps to find out which
set of variables is problematic.
Usage
collinearity(x, verbose)
Arguments
x |
A |
verbose |
An integer. If higher than or equal to 1, then a note is prompted at
each step of the algorithm. By default |
Details
This function tests: 1) collinearity with the fixed-effect variables, 2) perfect multi-collinearity between the variables, 3) perfect multi-collinearity between several variables and the fixed-effects, and 4) identification issues when there are non-linear in parameters parts.
Value
It returns a text message with the identified diagnostics.
Author(s)
Laurent Berge
Examples
# Creating an example data base:
set.seed(1)
fe_1 = sample(3, 100, TRUE)
fe_2 = sample(20, 100, TRUE)
x = rnorm(100, fe_1)**2
y = rnorm(100, fe_2)**2
z = rnorm(100, 3)**2
dep = rpois(100, x*y*z)
base = data.frame(fe_1, fe_2, x, y, z, dep)
# creating collinearity problems:
base$v1 = base$v2 = base$v3 = base$v4 = 0
base$v1[base$fe_1 == 1] = 1
base$v2[base$fe_1 == 2] = 1
base$v3[base$fe_1 == 3] = 1
base$v4[base$fe_2 == 1] = 1
# Estimations:
# Collinearity with the fixed-effects:
res_1 = femlm(dep ~ log(x) + v1 + v2 + v4 | fe_1 + fe_2, base)
collinearity(res_1)
# => collinearity with the first fixed-effect identified, we drop v1 and v2
res_1bis = femlm(dep ~ log(x) + v4 | fe_1 + fe_2, base)
collinearity(res_1bis)
# Multi-Collinearity:
res_2 = femlm(dep ~ log(x) + v1 + v2 + v3 + v4, base)
collinearity(res_2)