error_minimize {findGSEP} | R Documentation |
Minimize the Error for K-mer Frequency Fitting
Description
This function minimizes the error for k-mer frequency fitting by adjusting the mean, standard deviation, and scaling factors.
Usage
error_minimize(
tooptimize,
x,
end,
xfit,
xfit_left,
xfit_right,
d,
min_valid_pos,
itr
)
Arguments
tooptimize |
A numeric vector containing the scale factors to optimize. |
x |
A numeric vector representing the histogram replicated from |
end |
An integer indicating the right-side position for fitting. |
xfit |
x-values to get the skew normal distribution |
xfit_left |
A numeric value for the left-side position to calculate initial mean and standard deviation. |
xfit_right |
A numeric value for the right-side position to calculate initial mean and standard deviation. |
d |
A data frame representing the observed k-mer frequencies that will be fitted. |
min_valid_pos |
An integer indicating the left-side position from which the observed k-mer frequencies will be fitted. |
itr |
An integer representing the iteration count. |
Value
A numeric value representing the minimized error.
Examples
tooptimize <- c(1, 1, 1, 1)
x <- rnorm(100)
end <- 100
xfit <- seq(min(x), max(x), length=end)
xfit_left <- min(x)
xfit_right <- max(x)
d <- data.frame(V1=1:100, V2=rnorm(100))
min_valid_pos <- 10
itr <- 100
error <- error_minimize(tooptimize, x, end, xfit, xfit_left, xfit_right, d, min_valid_pos, itr)
print(error)