pval.estimate.eta0 {fdrtool} | R Documentation |
Estimate the Proportion of Null p-Values
Description
pval.estimate.eta0
estimates the proportion eta0 of null p-values in a given
vector of p-values.
Usage
pval.estimate.eta0(p, method=c("smoother", "bootstrap", "conservative",
"adaptive", "quantile"), lambda=seq(0,0.9,0.05),
diagnostic.plot=TRUE, q=0.1)
Arguments
p |
vector of p-values |
method |
algorithm used to estimate the proportion of null p-values. Available options are "conservative" , "adaptive", "bootstrap", quantile, and "smoother" (default). |
lambda |
optional tuning parameter vector needed for "bootstrap"
and "smoothing" methods (defaults to |
diagnostic.plot |
if |
q |
quantile used for estimating eta0 - only if |
Details
This quantity eta0
, i.e. the proportion eta0 of null p-values in a given
vector of p-values, is an important parameter
when controlling the false discovery rate (FDR). A conservative choice is
eta0 = 1 but a choice closer to the true value will increase efficiency
and power
- see Benjamini and Hochberg (1995, 2000) and Storey (2002) for details.
The function pval.estimate.eta0
provides five algorithms: the "conservative"
method always returns eta0 = 1 (Benjamini and Hochberg, 1995), "adaptive"
uses the approach suggested in Benjamini and Hochberg (2000), "bootstrap"
employs the method from Storey (2002), "smoother" uses the smoothing spline
approach in Storey and Tibshirani (2003), and "quantile" is a simplified version
of "smoother".
Value
The estimated proportion eta0 of null p-values.
Author(s)
Korbinian Strimmer (https://strimmerlab.github.io).
Adapted in part from code by Y. Benjamini and J.D. Storey.
References
"conservative" procedure: Benjamini, Y., and Y. Hochberg (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. B, 57, 289–300.
"adaptive" procedure: Benjamini, Y., and Y. Hochberg (2000) The adaptive control of the false discovery rate in multiple hypotheses testing with independent statistics. J. Behav. Educ. Statist., 25, 60–83.
"bootstrap" procedure: Storey, J. D. (2002) A direct approach to false discovery rates. J. Roy. Statist. Soc. B., 64, 479–498.
"smoother" procedure: Storey, J. D., and R. Tibshirani (2003) Statistical significance for genome-wide experiments. Proc. Nat. Acad. Sci. USA, 100, 9440-9445.
"quantile" procedure: similar to smoother, except that the lower q quantile of all eta0 computed in dependence of lambda is taken as overall estimate of eta0.
See Also
Examples
# load "fdrtool" library and p-values
library("fdrtool")
data(pvalues)
# Proportion of null p-values for different methods
pval.estimate.eta0(pvalues, method="conservative")
pval.estimate.eta0(pvalues, method="adaptive")
pval.estimate.eta0(pvalues, method="bootstrap")
pval.estimate.eta0(pvalues, method="smoother")
pval.estimate.eta0(pvalues, method="quantile")