halfnormal {fdrtool} | R Documentation |
The Half-Normal Distribution
Description
Density, distribution function, quantile function and random
generation for the half-normal distribution with parameter theta
.
Usage
dhalfnorm(x, theta=sqrt(pi/2), log = FALSE)
phalfnorm(q, theta=sqrt(pi/2), lower.tail = TRUE, log.p = FALSE)
qhalfnorm(p, theta=sqrt(pi/2), lower.tail = TRUE, log.p = FALSE)
rhalfnorm(n, theta=sqrt(pi/2))
sd2theta(sd)
theta2sd(theta)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
theta |
parameter of half-normal distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
sd |
standard deviation of the zero-mean normal distribution
that corresponds to the half-normal with parameter |
Details
x = abs(z)
follows a half-normal distribution with
if z
is a normal variate with zero mean.
The half-normal distribution has density
f(x) =
\frac{2 \theta}{\pi} e^{-x^2 \theta^2/\pi}
It has mean E(x) = \frac{1}{\theta}
and variance
Var(x) = \frac{\pi-2}{2 \theta^2}
.
The parameter \theta
is related to the
standard deviation \sigma
of the corresponding
zero-mean normal distribution by the equation
\theta = \sqrt{\pi/2}/\sigma
.
If \theta
is not specified in the above functions
it assumes the default values of \sqrt{\pi/2}
,
corresponding to \sigma=1
.
Value
dhalfnorm
gives the density,
phalfnorm
gives the distribution function,
qhalfnorm
gives the quantile function, and
rhalfnorm
generates random deviates.
sd2theta
computes a theta
parameter.
theta2sd
computes a sd
parameter.
See Also
Examples
# load "fdrtool" library
library("fdrtool")
## density of half-normal compared with a corresponding normal
par(mfrow=c(1,2))
sd.norm = 0.64
x = seq(0, 5, 0.01)
x2 = seq(-5, 5, 0.01)
plot(x, dhalfnorm(x, sd2theta(sd.norm)), type="l", xlim=c(-5, 5), lwd=2,
main="Probability Density", ylab="pdf(x)")
lines(x2, dnorm(x2, sd=sd.norm), col=8 )
plot(x, phalfnorm(x, sd2theta(sd.norm)), type="l", xlim=c(-5, 5), lwd=2,
main="Distribution Function", ylab="cdf(x)")
lines(x2, pnorm(x2, sd=sd.norm), col=8 )
legend("topleft",
c("half-normal", "normal"), lwd=c(2,1),
col=c(1, 8), bty="n", cex=1.0)
par(mfrow=c(1,1))
## distribution function
integrate(dhalfnorm, 0, 1.4, theta = 1.234)
phalfnorm(1.4, theta = 1.234)
## quantile function
qhalfnorm(-1) # NaN
qhalfnorm(0)
qhalfnorm(.5)
qhalfnorm(1)
qhalfnorm(2) # NaN
## random numbers
theta = 0.72
hz = rhalfnorm(10000, theta)
hist(hz, freq=FALSE)
lines(x, dhalfnorm(x, theta))
mean(hz)
1/theta # theoretical mean
var(hz)
(pi-2)/(2*theta*theta) # theoretical variance
## relationship with two-sided normal p-values
z = rnorm(1000)
# two-sided p-values
pvl = 1- phalfnorm(abs(z))
pvl2 = 2 - 2*pnorm(abs(z))
sum(pvl-pvl2)^2 # equivalent
hist(pvl2, freq=FALSE) # uniform distribution
# back to half-normal scores
hz = qhalfnorm(1-pvl)
hist(hz, freq=FALSE)
lines(x, dhalfnorm(x))