censored.fit {fdrtool} | R Documentation |
Fit Null Distribution To Censored Data by Maximum Likelihood
Description
censored.fit
fits a null distribution
to censored data.
fndr.cutoff
finds a suitable cutoff point based on the
(approximate) false non-discovery rate (FNDR).
Usage
censored.fit(x, cutoff, statistic=c("normal", "correlation", "pvalue", "studentt"))
fndr.cutoff(x, statistic=c("normal", "correlation", "pvalue", "studentt"))
Arguments
x |
vector of test statistics. |
cutoff |
truncation point (this may a single value or a vector). |
statistic |
type of statistic - normal, correlation, or student t. |
Details
As null model truncated normal, truncated student t or a truncated correlation density is assumed. The truncation point is specified by the cutoff parameter. All data points whose absolute value are large than the cutoff point are ignored when fitting the truncated null model via maximum likelihood. The total number of data points is only used to estimate the fraction of null values eta0.
Value
censored.fit
returns a matrix whose rows contain the estimated parameters and corresponding errors
for each cutoff point.
fndr.cutoff
returns a tentative cutoff point.
See Also
Examples
# load "fdrtool" library
library("fdrtool")
# simulate normal data
sd.true = 2.232
n = 5000
z = rnorm(n, sd=sd.true)
censored.fit(z, c(2,3,5), statistic="normal")
# simulate contaminated mixture of correlation distribution
r = rcor0(700, kappa=10)
u1 = runif(200, min=-1, max=-0.7)
u2 = runif(200, min=0.7, max=1)
rc = c(r, u1, u2)
censored.fit(r, 0.7, statistic="correlation")
censored.fit(rc, 0.7, statistic="correlation")
# pvalue example
data(pvalues)
co = fndr.cutoff(pvalues, statistic="pvalue")
co
censored.fit(pvalues, cutoff=co, statistic="pvalue")