plot.ITPlm {fdatest} | R Documentation |
Plotting ITP results for functional-on-scalar linear model testing
Description
plot
method for class "ITPlm
".
Plotting function creating a graphical output of the ITP for the test on a functional-on-scalar linear model: functional data, functional coefficients and ITP-adjusted p-values for the F-test and t-tests are plotted.
Usage
## S3 method for class 'ITPlm'
plot(x, xrange = c(0, 1), alpha1 = 0.05, alpha2 = 0.01,
plot.adjpval = FALSE, col = c(1, rainbow(dim(x$corrected.pval.t)[1])),
ylim = range(x$data.eval), ylab = "Functional Data",
main = NULL, lwd = 1, pch = 16, ...)
Arguments
x |
The object to be plotted.
An object of class " |
xrange |
Range of the |
alpha1 |
First level of significance used to select and display significant effects. Default is |
alpha2 |
Second level of significance used to select and display significant effects. Default is |
plot.adjpval |
A logical indicating wether the plots of adjusted p-values have to be done. Default is |
col |
Vector of colors for the plot of functional data (first element), and functional coefficients (following elements). Default is |
ylim |
Range of the |
ylab |
Label of |
main |
An overall title for the plots (it will be pasted to " |
lwd |
Line width for the plot of functional data. Default is |
pch |
Point character for the plot of adjusted p-values. Default is |
... |
Additional plotting arguments that can be used with function |
Value
No value returned.
The function produces a graphical output of the ITP results: the plot of the functional data, functional regression coefficients, and ITP-adjusted p-values for the F-test and t-tests.
The basis components selected as significant by the tests at level alpha1
and alpha2
are highlighted in the plot of the corrected p-values and in the one of functional data by gray areas (light and dark gray, respectively).
The plot of functional data reports the gray areas corresponding to a significant F-test. The plots of functional regression coefficients report the gray areas corresponding to significant t-tests for the corresponding covariate.
Author(s)
Alessia Pini, Simone Vantini
References
A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data Controlling the Family Wise Error Rate on Intervals. MOX-report 13/2013, Politecnico di Milano.
K. Abramowicz, S. De Luna, C. Häger, A. Pini, L. Schelin, and S. Vantini (2015). Distribution-Free Interval-Wise Inference for Functional-on-Scalar Linear Models. MOX-report 3/2015, Politecnico di Milano.
See Also
See also ITPlmbspline
to fit and test a functional-on-scalar linear model applying the ITP, and summary.ITPlm
for summaries.
See plot.ITPaov
, plot.ITP1
, and plot.ITP2
for the plot method applied to the ITP results of functional analysis of variance, one-population and two-population, respectively.
Examples
# Importing the NASA temperatures data set
data(NASAtemp)
data <- rbind(NASAtemp$milan,NASAtemp$paris)
lab <- c(rep(0,22),rep(1,22))
# Performing the ITP
ITP.result <- ITPlmbspline(data ~ lab,B=1000,nknots=20,order=3)
# Summary of the ITP results
summary(ITP.result)
# Plot of the ITP results
layout(1)
plot(ITP.result,main='NASA data',xlab='Day',xrange=c(1,365))
# Plots of the adjusted p-values
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))
# To have all plots in one device
layout(matrix(1:6,nrow=3,byrow=FALSE))
plot(ITP.result,main='NASA data', plot.adjpval = TRUE,xlab='Day',xrange=c(1,365))