vertFPCA {fdasrvf} | R Documentation |
Vertical Functional Principal Component Analysis
Description
This function calculates vertical functional principal component analysis on aligned data
Usage
vertFPCA(
warp_data,
no = 3,
var_exp = NULL,
id = round(length(warp_data$time)/2),
ci = c(-1, 0, 1),
showplot = TRUE
)
Arguments
warp_data |
fdawarp object from time_warping of aligned data |
no |
number of principal components to extract |
var_exp |
compute no based on value percent variance explained (example: 0.95)
will override |
id |
point to use for f(0) (default = midpoint) |
ci |
geodesic standard deviations (default = c(-1,0,1)) |
showplot |
show plots of principal directions (default = T) |
Value
Returns a vfpca object containing
q_pca |
srvf principal directions |
f_pca |
f principal directions |
latent |
latent values |
coef |
coefficients |
U |
eigenvectors |
id |
point used for f(0) |
References
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Examples
vfpca <- vertFPCA(simu_warp, no = 3)
[Package fdasrvf version 2.3.1 Index]