| time_warping {fdasrvf} | R Documentation |
Alignment of univariate functional data
Description
This function aligns a collection of 1-dimensional curves that are
observed on the same grid.
Usage
time_warping(
f,
time,
lambda = 0,
penalty_method = c("roughness", "geodesic", "norm"),
centroid_type = c("mean", "median"),
center_warpings = TRUE,
smooth_data = FALSE,
sparam = 25L,
parallel = FALSE,
optim_method = c("DP", "DPo", "DP2", "RBFGS"),
max_iter = 20L
)
Arguments
f |
A numeric matrix of shape |
time |
A numeric vector of length |
lambda |
A numeric value specifying the elasticity. Defaults to |
penalty_method |
A string specifying the penalty term used in the
formulation of the cost function to minimize for alignment. Choices are
|
centroid_type |
A string specifying the type of centroid to align to.
Choices are |
center_warpings |
A boolean specifying whether to center the estimated
warping functions. Defaults to |
smooth_data |
A boolean specifying whether to smooth curves using a box
filter. Defaults to |
sparam |
An integer value specifying the number of times to apply the
box filter. Defaults to |
parallel |
A boolean specifying whether to run calculations in parallel.
Defaults to |
optim_method |
A string specifying the algorithm used for optimization.
Choices are |
max_iter |
An integer value specifying the maximum number of iterations.
Defaults to |
Value
An object of class fdawarp which is a list with the following
components:
-
time: a numeric vector of lengthMstoring the original grid; -
f0: a numeric matrix of shapeM \times Nstoring the original sample ofNfunctions observed on a grid of sizeM; -
q0: a numeric matrix of the same shape asf0storing the original SRSFs; -
fn: a numeric matrix of the same shape asf0storing the aligned functions; -
qn: a numeric matrix of the same shape asf0storing the aligned SRSFs; -
fmean: a numeric vector of lengthMstoring the mean or median curve; -
mqn: a numeric vector of lengthMstoring the mean or median SRSF; -
warping_functions: a numeric matrix of the same shape asf0storing the estimated warping functions; -
original_variance: a numeric value storing the variance of the original sample; -
amplitude_variance: a numeric value storing the variance in amplitude of the aligned sample; -
phase_variance: a numeric value storing the variance in phase of the aligned sample; -
qun: a numeric vector of maximum lengthmax_iter + 2storing the values of the cost function after each iteration; -
lambda: the input parameterlambdawhich specifies the elasticity; -
centroid_type: the input centroid type; -
optim_method: the input optimization method; -
inverse_average_warping_function: the inverse of the mean estimated warping function; -
rsamps: TO DO.
References
Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J. S., May 2011. Registration of functional data using Fisher-Rao metric, arXiv:1103.3817v2.
Tucker, J. D., Wu, W., Srivastava, A., Generative models for functional data using phase and amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Examples
## Not run:
out <- time_warping(simu_data$f, simu_data$time)
## End(Not run)