shape_CI {fdasrvf} | R Documentation |
Shape Confidence Interval Calculation using Bootstrap Sampling
Description
This function computes Confidence bounds for shapes using elastic metric
Usage
shape_CI(
beta,
a = 0.95,
no = 5,
Nsamp = 100,
mode = "O",
rotated = TRUE,
scale = TRUE,
lambda = 0,
parallel = TRUE
)
Arguments
beta |
Array of sizes |
a |
confidence level (default = 0.95) |
no |
number of principal components (default = 5) |
Nsamp |
number of functions to generate (default = 100) |
mode |
Open ( |
rotated |
Optimize over rotation (default = |
scale |
scale curves to unit length (default = |
lambda |
A numeric value specifying the elasticity. Defaults to |
parallel |
enable parallel processing (default = T) |
Value
Return shape confidence intervals
References
J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, “A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data,” Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.