pcaTB {fdasrvf} | R Documentation |
Tolerance Bound Calculation using Elastic Functional PCA
Description
This function computes tolerance bounds for functional data containing phase and amplitude variation using principal component analysis
Usage
pcaTB(f, time, m = 4, B = 1e+05, a = 0.05, p = 0.99)
Arguments
f |
matrix of functions |
time |
vector describing time sampling |
m |
number of principal components (default = 4) |
B |
number of monte carlo iterations |
a |
confidence level of tolerance bound (default = 0.05) |
p |
coverage level of tolerance bound (default = 0.99) |
Value
Returns a list containing
pca |
pca output |
tol |
tolerance factor |
References
J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, “A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data,” Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Jung, S. L. a. S. (2016). "Combined Analysis of Amplitude and Phase Variations in Functional Data." arXiv:1603.01775.
Examples
## Not run:
out1 <- pcaTB(simu_data$f, simu_data$time)
## End(Not run)