optimum.reparam {fdasrvf} | R Documentation |
Align two functions
Description
This function aligns the SRVFs of two functions in R^1
defined on an
interval [t_{\min}, t_{\max}]
using dynamic programming or RBFGS
Usage
optimum.reparam(
Q1,
T1,
Q2,
T2,
lambda = 0,
pen = "roughness",
method = c("DP", "DPo", "SIMUL", "RBFGS"),
f1o = 0,
f2o = 0,
nbhd_dim = 7
)
Arguments
Q1 |
A numeric matrix of shape |
T1 |
A numeric vector of size |
Q2 |
A numeric matrix of shape |
T2 |
A numeric vector of size |
lambda |
A numeric value specifying the amount of warping. Defaults to
|
pen |
alignment penalty (default="roughness") options are second derivative ("roughness"), geodesic distance from id ("geodesic"), and norm from id ("l2gam"), srvf norm from id ("l2psi") |
method |
A string specifying the optimization method. Choices are
|
f1o |
A numeric vector of size |
f2o |
A numeric vector of size |
nbhd_dim |
size of the grid (default = 7) |
Value
A numeric vector of size n_points
storing discrete evaluations of
the estimated boundary-preserving warping diffeomorphism on the initial
grid.
References
Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J. S., May 2011. Registration of functional data using Fisher-Rao metric, arXiv:1103.3817v2.
Tucker, J. D., Wu, W., Srivastava, A., Generative models for functional data using phase and amplitude separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Examples
q <- f_to_srvf(simu_data$f, simu_data$time)
gam <- optimum.reparam(q[, 1], simu_data$time, q[, 2], simu_data$time)