joint_gauss_model {fdasrvf} | R Documentation |
Gaussian model of functional data using joint Model
Description
This function models the functional data using a Gaussian model extracted from the principal components of the srvfs using the joint model
Usage
joint_gauss_model(warp_data, n = 1, no = 5)
Arguments
warp_data |
fdawarp object from time_warping of aligned data |
n |
number of random samples (n = 1) |
no |
number of principal components (n=4) |
Value
Returns a fdawarp object containing
fs |
random aligned samples |
gams |
random warping function samples |
ft |
random function samples |
qs |
random srvf samples |
References
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Jung, S. L. a. S. (2016). "Combined Analysis of Amplitude and Phase Variations in Functional Data." arXiv:1603.01775.
Examples
out1 <- joint_gauss_model(simu_warp, n = 10)
[Package fdasrvf version 2.3.1 Index]