horizFPCA {fdasrvf} | R Documentation |
Horizontal Functional Principal Component Analysis
Description
This function calculates vertical functional principal component analysis on aligned data
Usage
horizFPCA(warp_data, no = 3, var_exp = NULL, ci = c(-1, 0, 1), showplot = TRUE)
Arguments
warp_data |
fdawarp object from time_warping of aligned data |
no |
number of principal components to extract |
var_exp |
compute no based on value percent variance explained (example: 0.95)
will override |
ci |
geodesic standard deviations (default = c(-1,0,1)) |
showplot |
show plots of principal directions (default = T) |
Value
Returns a hfpca object containing
gam_pca |
warping functions principal directions |
psi_pca |
srvf principal directions |
latent |
latent values |
U |
eigenvectors |
vec |
shooting vectors |
mu |
Karcher Mean |
References
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
Examples
hfpca <- horizFPCA(simu_warp, no = 3)
[Package fdasrvf version 2.3.1 Index]