elastic.regression {fdasrvf} | R Documentation |
Elastic Linear Regression
Description
This function identifies a regression model with phase-variability using elastic methods
Usage
elastic.regression(
f,
y,
time,
B = NULL,
lam = 0,
df = 20,
max_itr = 20,
smooth_data = FALSE,
sparam = 25,
parallel = FALSE,
cores = 2
)
Arguments
f |
matrix ( |
y |
vector of size |
time |
vector of size |
B |
matrix defining basis functions (default = NULL) |
lam |
scalar regularization parameter (default=0) |
df |
scalar controlling degrees of freedom if B=NULL (default=20) |
max_itr |
scalar number of iterations (default=20) |
smooth_data |
smooth data using box filter (default = F) |
sparam |
number of times to apply box filter (default = 25) |
parallel |
enable parallel mode using |
cores |
set number of cores to use with |
Value
Returns a list containing
alpha |
model intercept |
beta |
regressor function |
fn |
aligned functions - matrix ( |
qn |
aligned srvfs - similar structure to fn |
gamma |
warping functions - similar structure to fn |
q |
original srvf - similar structure to fn |
B |
basis matrix |
b |
basis coefficients |
SSE |
sum of squared errors |
type |
model type ('linear') |
References
Tucker, J. D., Wu, W., Srivastava, A., Elastic Functional Logistic Regression with Application to Physiological Signal Classification, Electronic Journal of Statistics (2014), submitted.