elastic.pcr.regression {fdasrvf} | R Documentation |
Elastic Linear Principal Component Regression
Description
This function identifies a regression model with phase-variability using elastic pca
Usage
elastic.pcr.regression(
f,
y,
time,
pca.method = "combined",
no = 5,
smooth_data = FALSE,
sparam = 25,
parallel = F,
C = NULL
)
Arguments
f |
matrix ( |
y |
vector of size |
time |
vector of size |
pca.method |
string specifying pca method (options = "combined", "vert", or "horiz", default = "combined") |
no |
scalar specify number of principal components (default = 5) |
smooth_data |
smooth data using box filter (default = F) |
sparam |
number of times to apply box filter (default = 25) |
parallel |
run in parallel (default = F) |
C |
scale balance parameter for combined method (default = NULL) |
Value
Returns a pcr object containing
alpha |
model intercept |
b |
regressor vector |
y |
response vector |
warp_data |
fdawarp object of aligned data |
pca |
pca object of principal components |
SSE |
sum of squared errors |
pca.method |
string specifying pca method used |
References
J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic Functional Principal Component Regression,” Statistical Analysis and Data Mining, 10.1002/sam.11399, 2018.