sd.fd {fda} | R Documentation |
Standard Deviation of Functional Data
Description
Evaluate the standard deviation of a set of functions in a functional data object.
Usage
sd.fd(fdobj)
std.fd(fdobj)
stdev.fd(fdobj)
stddev.fd(fdobj)
Arguments
fdobj |
a functional data object. |
Details
The multiple aliases are provided for compatibility with previous versions and with other languages. The name for the standard deviation function in R is 'sd'. Matlab uses 'std'. S-Plus and Microsoft Excal use 'stdev'. 'stddev' was used in a previous version of the 'fda' package and is retained for compatibility.
Value
a functional data object with a single replication
that contains the standard deviation of the one or several functions in
the object fdobj
.
References
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
See Also
Examples
liptime <- seq(0,1,.02)
liprange <- c(0,1)
# ------------- create the fd object -----------------
# use 31 order 6 splines so we can look at acceleration
nbasis <- 51
norder <- 6
lipbasis <- create.bspline.basis(liprange, nbasis, norder)
lipbasis <- create.bspline.basis(liprange, nbasis, norder)
# ------------ apply some light smoothing to this object -------
Lfdobj <- int2Lfd(4)
lambda <- 1e-12
lipfdPar <- fdPar(fd(matrix(0,nbasis,1), lipbasis), Lfdobj, lambda)
lipfd <- smooth.basis(liptime, lip, lipfdPar)$fd
names(lipfd$fdnames) = c("Normalized time", "Replications", "mm")
lipstdfd <- sd.fd(lipfd)
oldpar <- par(no.readonly=TRUE)
plot(lipstdfd)
par(oldpar)
all.equal(lipstdfd, std.fd(lipfd))
all.equal(lipstdfd, stdev.fd(lipfd))
all.equal(lipstdfd, stddev.fd(lipfd))