rsp_exact {factor.switching} | R Documentation |
Rotation-Sign-Permutation (RSP) algorithm (Exact scheme)
Description
Rotation-Sign-Permutation (RSP) algorithm (exact).
Usage
rsp_exact(lambda_mcmc, maxIter, threshold, verbose, rotate, printIter)
Arguments
lambda_mcmc |
Input matrix containing a MCMC sample of factor loadings. The column names should read as 'LambdaV1_1',..., 'LambdaV1_q', ..., 'LambdaVp_1',..., 'LambdaVp_q', where |
maxIter |
Maximum number of iterations of the RSP algorithm. Default: 100. |
threshold |
Positive threshold for declaring convergence. The actual convergence criterion is |
verbose |
Logical value indicating whether to print intermediate output or not. |
rotate |
Logical. Default: TRUE. |
printIter |
Print the progress of the algorithm when processing |
Value
lambda_reordered_mcmc |
Post-processed MCMC sample of factor loadings. |
sign_vectors |
The final sign-vectors. |
permute_vectors |
The final permutations. |
lambda_hat |
The resulting average of the post-processed MCMC sample of factor loadings. |
objective_function |
A two-column matrix containing the time-to-reach and the value of the objective function for each iteration. |
Author(s)
Panagiotis Papastamoulis
References
Papastamoulis, P. and Ntzoufras, I. (2020). On the identifiability of Bayesian Factor Analytic models. arXiv:2004.05105 [stat.ME].
Examples
# load small mcmc sample of 100 iterations
# with p=6 variables and q=2 factors.
data(small_posterior_2chains)
# post-process it
reorderedPosterior <- rsp_exact(
lambda_mcmc = small_posterior_2chains[[1]])
# summarize the post-processed MCMC sample with coda
summary(reorderedPosterior$lambda_reordered_mcmc)