make_switch_data {eyetrackingR} | R Documentation |
Summarize data into time-to-switch from initial AOI.
Description
Take trials split by initial-AOI, and determine how quickly participants switch away from that AOI
Usage
make_switch_data(data, predictor_columns, summarize_by)
## S3 method for class 'onset_data'
make_switch_data(data, predictor_columns = NULL, summarize_by = NULL)
Arguments
data |
The output of |
predictor_columns |
Variables/covariates of interest when analyzing time-to-switch |
summarize_by |
Should the data be summarized along, e.g., participants, items, etc.? If so, give column name(s) here. If left blank, will leave trials distinct. The former is needed for more traditional analyses (t.tests, ANOVAs), while the latter is preferable for mixed-effects models (lmer) |
Value
A dataframe indicating initial AOI and time-to-switch from that AOI for each trial/subject/item/etc.
Methods (by class)
-
make_switch_data(onset_data)
:
Examples
## Not run:
data(word_recognition)
data <- make_eyetrackingr_data(word_recognition,
participant_column = "ParticipantName",
trial_column = "Trial",
time_column = "TimeFromTrialOnset",
trackloss_column = "TrackLoss",
aoi_columns = c('Animate','Inanimate'),
treat_non_aoi_looks_as_missing = TRUE
)
response_window <- subset_by_window(data, window_start_time = 15500, window_end_time = 21000,
rezero = FALSE)
inanimate_trials <- subset(response_window, grepl('(Spoon|Bottle)', Trial))
onsets <- make_onset_data(inanimate_trials, onset_time = 15500,
fixation_window_length = 100, target_aoi='Inanimate')
df_switch <- make_switch_data(onsets, predictor_columns = "MCDI_Total",
summarize_by = "ParticipantName")
plot(df_switch, "MCDI_Total")
## End(Not run)
[Package eyetrackingR version 0.2.1 Index]