log_lik_beta_binom {extras} | R Documentation |
Beta-Binomial Log-Likelihood
Description
This parameterization of the beta-binomial distribution uses an expected probability parameter, prob
, and a dispersion parameter, theta
. The parameters of the underlying beta mixture are alpha = (2 * prob) / theta
and beta = (2 * (1 - prob)) / theta
. This parameterization of theta
is unconventional, but has useful properties when modelling. When theta = 0
, the beta-binomial reverts to the binomial distribution. When theta = 1
and prob = 0.5
, the parameters of the beta distribution become alpha = 1
and beta = 1
, which correspond to a uniform distribution for the beta-binomial probability parameter.
Usage
log_lik_beta_binom(x, size = 1, prob = 0.5, theta = 0)
Arguments
x |
A non-negative whole numeric vector of values. |
size |
A non-negative whole numeric vector of the number of trials. |
prob |
A numeric vector of values between 0 and 1 of the probability of success. |
theta |
A non-negative numeric vector of the dispersion for the mixture models (student, gamma-Poisson and beta-binomial). |
Value
An numeric vector of the corresponding log-likelihoods.
See Also
Other log_lik_dist:
log_lik_bern()
,
log_lik_binom()
,
log_lik_gamma_pois_zi()
,
log_lik_gamma_pois()
,
log_lik_gamma()
,
log_lik_lnorm()
,
log_lik_neg_binom()
,
log_lik_norm()
,
log_lik_pois_zi()
,
log_lik_pois()
,
log_lik_student()
Examples
log_lik_beta_binom(c(0, 1, 2), 1, 0.5, 0)