delta_Bel {evclust} | R Documentation |
Delta-Bel graph for Belief Peak Evidential Clustering (BPEC)
Description
delta_Bel
computes the delta-Bel graph used to determine the proptotypes in the
Belief Peak Evidential Clustering (BPEC) algorithm. The user must manually specify the rectangles
containing the protytypes (which are typically in the upper-right corner of the graph is the clusters
are well-seperated). These prototypes are then used by function bpec
to compute a credal
partition.
Usage
delta_Bel(x, K, q = 0.9)
Arguments
x |
input matrix of size n x d, where n is the number of objects and d the number of attributes. |
K |
Number of neighbors to determine belief values |
q |
Parameter of the algorithm, between 0 and 1 (default: 0.9). |
Value
A list with three elements:
- BelC
The belief values.
- delta
The delta values.
- g0
A c*d matrix containing the prototypes.
- ii
List of indices of the belief peaks.
Author(s)
Thierry Denoeux .
References
Z.-G. Su and T. Denoeux. BPEC: Belief-Peaks Evidential Clustering. IEEE Transactions on Fuzzy Systems, 27(1):111-123, 2019.
See Also
Examples
## Not run:
data(fourclass)
x<-fourclass[,1:2]
y<-fourclass[,3]
DB<-delta_Bel(x,100,0.9)
plot(x,pch=".")
points(DB$g0,pch=3,col="red",cex=2)
## End(Not run)