sp.similarity.from.mesh {espadon} | R Documentation |
Distance-based spatial similarity metrics calculated from the mesh.
Description
The sp.similarity.from.mesh
function computes Hausdorff
distances and surface Dice similarity coefficient.
Usage
sp.similarity.from.mesh(
mesh1,
mesh2,
hausdorff.coeff = c("HD.max", "HD.mean"),
hausdorff.quantile = c(0.5, 0.95),
surface.tol = seq(0, 10, 1)
)
Arguments
mesh1 , mesh2 |
espadon mesh class objects |
hausdorff.coeff |
Vector indicating the requested Hausdorff distance metrics from among
'HD.max','HD.mean'. Equal to |
hausdorff.quantile |
numeric vector of probabilities with values between 0 and 1,
representing the quantiles of the unsigned distances between |
surface.tol |
numeric vector representing the maximum margins of
deviation which may be tolerated without penalty. Equal to |
Value
Returns a list containing (if requested):
-
Hausdorff
: dataframe including the maximum, mean and quantiles -
smetrics
: dataframe with the columns:-
tol
: the requested tolerances -
sDSC
: the surface Dice similarity coefficients,defined by Nikolov et al [1] -
sAPL
: the surface Added Path Length in \(mm^{2}\), introduced (in pixels) by Vaassen et al [2]
-
References
[1] Nikolov S, et al. (2018). “Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy.” ArXiv, abs/1809.04430.
[2] Vaassen S, et al. (2020). “Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy.” Physics and Imaging in Radiation Oncology, 13, 1-6.
See Also
Examples
library (Rvcg)
# espadon mesh of two spheres of radius R1=10 and R2=11, separated by dR = 3
sph <- vcgSphere ()
mesh1 <- obj.create ("mesh")
mesh1$nb.faces <- ncol (sph$it)
mesh1$mesh <- sph
mesh2 <- mesh1
R1 <- 10
R2 <- 11
dR <- 3
mesh1$mesh$vb[1:3,] <- R1 * mesh1$mesh$normals[1:3,] + mesh1$mesh$vb[1:3,]
mesh2$mesh$vb[1:3,] <- R2 * mesh2$mesh$normals[1:3,] + mesh2$mesh$vb[1:3,] +
matrix (c (dR, 0, 0), ncol = ncol (mesh2$mesh$vb), nrow = 3)
sp.similarity.from.mesh (mesh1 , mesh2,
hausdorff.quantile = seq (0, 1, 0.05),
surface.tol = seq (0, dR + abs(R2-R1), 0.5))