rt.indices.from.roi {espadon} | R Documentation |
Dosimetry, volume, conformity, homogeneity indices from RoI
Description
The rt.indices.from.roi
function calculates, from a "volume"
class object of modality "rtdose", standard indicators of radiotherapy
in relation to the target and healthy RoI, as long as their options are transmitted.
Usage
rt.indices.from.roi(
vol,
struct = NULL,
T.MAT = NULL,
target.roi.name = NULL,
target.roi.sname = NULL,
target.roi.idx = NULL,
healthy.roi.name = NULL,
healthy.roi.sname = NULL,
healthy.roi.idx = NULL,
presc.dose = NA,
healthy.tol.dose = NA,
healthy.weight = 1,
dosimetry = c("D.min", "D.max", "D.mean", "STD"),
volume.indices = c("V.tot", "area", "V.prescdose"),
conformity.indices = c("PITV", "PDS", "CI.lomax2003", "CN", "NCI", "DSC",
"CI.distance", "CI.abs_distance", "CDI", "CS3", "ULF", "OHTF", "gCI", "COIN",
"G_COSI", "COSI"),
homogeneity.indices = c("HI.RTOG.max_ref", "HI.RTOG.5_95", "HI.ICRU.max_min",
"HI.ICRU.2.98_ref", "HI.ICRU.2.98_50", "HI.ICRU.5.95_ref", "HI.mayo2010",
"HI.heufelder"),
gradient.indices = c("GI.ratio.50", "mGI"),
D.xpc = NULL,
D.xcc = NULL,
V.xpc = NULL,
V.xGy = NULL,
verbose = TRUE
)
Arguments
vol |
"volume" class object, of "rtdose" modality. |
struct |
"struct" class object. |
T.MAT |
"t.mat" class object, created by load.patient.from.Rdcm
or load.T.MAT. If |
target.roi.name |
Exact name of target RoI in |
target.roi.sname |
Name or part of name of target RoI in |
target.roi.idx |
Value of the index of target RoI that belong to the
|
healthy.roi.name |
Exact name of healthy RoI in |
healthy.roi.sname |
Name or part of name of healthy RoI in |
healthy.roi.idx |
Value of the index of healthy RoI that belong to the
|
presc.dose |
Vector of prescription doses that serve as reference doses for the target RoI. |
healthy.tol.dose |
Vector of tolerance doses of each healthy RoI. |
healthy.weight |
Vector of weights, indicating the importance of the healthy RoI. |
dosimetry |
Vector indicating the requested dose indicators from among
'D.min', 'D.max', 'D.mean' and 'STD'. If |
volume.indices |
Vector indicating the requested volume indices from among
'V.tot', 'V.prescdose' (i.e. volume over |
conformity.indices |
Vector. Requested conformity indices from among 'PITV', 'PDS', 'CI.lomax2003', 'CN', 'NCI', 'DSC', 'CI.distance', 'CI.abs_distance', 'CDI', 'CS3', 'ULF', 'OHTF', 'gCI', 'COIN', 'COSI' and 'G_COSI'. |
homogeneity.indices |
Vector. Requested homogeneity indices from among 'HI.RTOG.max_ref', 'HI.RTOG.5_95', 'HI.ICRU.max_min', 'HI.ICRU.2.98_ref', 'HI.ICRU.2.98_50', 'HI.ICRU.5.95_ref', 'HI.mayo2010' and 'HI.heufelder.' |
gradient.indices |
Vector. Requested gradient indices from among 'GI.ratio.50', 'mGI'. |
D.xpc |
Vector of the percentage of the volume, for which the dose coverage is requested. |
D.xcc |
Vector of the volume in \(cm^3\), for which the dose coverage is requested. |
V.xpc |
Vector of the percentage of the reference dose, received by the volume to be calculated. |
V.xGy |
Vector of the minimum dose in Gy, received by the volume to be calculated. |
verbose |
Boolean. if |
Details
If target.roi.name
, target.roi.sname
, and
target.roi.idx
are all set to NULL
, all RoI containing 'ptv'
(if they exist) are selected.
If target.roi.name
, target.roi.sname
, and target.roi.idx
are all set to NULL
,no target RoI are selected.
If healthy.roi.name
, healthy.roi.sname
, and
healthy.roi.idx
are all set to NULL
, no healthy RoI are selected.
Value
Returns a list containing (if requested)
\(-~dosimetry\) : dataframe containing, for all target and healthy structures:
the requested
dosimetry
:D.min
(Gy),D.max
(Gy),D.mean
(Gy) andSTD
(Gy), respectively the minimum, maximum, mean and standard deviation of the dose in the regions of interest.the requested
$D.x%
: (Gy) Dose covering x percent of structure volume.the requested
$D.xcc
: (Gy) Dose covering x (\(cm^3\)) of structure volume.
\(-~volume\) : dataframe containing, for all target and healthy structures, and isodoses:
the requested
volume.indices
:V_tot
(\(cm^3\)) (except for isodose) the total volume of the regions of interest,area
(\(cm^2\)) (except for isodose) their surface areas,V.prescdose
(\(cm^3\)) the volumes receiving at leastpresc.dose
Gy,the requested
V.xGy
(\(cm^3\)): volumes receiving at least x Gy.the requested
V.xpc
(\(cm^3\)) Volume receiving at least x% of the reference dose.
\(-~conformity\) : dataframe containing, if requested,
-
PITV
: (1) Prescription Isodose Target Volume, or conformity index defined by E.Shaw [1] \[PITV = \frac{V_{presc.dose}}{V_{target}}\] -
PDS
: (1) Prescription Dose Spillage defined by SABR UK Consortium 2019 [2] \[PDS = \frac{V_{presc.dose}}{V_{target ~\ge~ presc.dose}} = \frac{V_{presc.dose}}{V_{target} ~\cap~ V_{presc.dose}}\] -
CI.lomax2003
: (1) Conformity Index defined by Lomax and al [3] \[CI_{lomax2003} = \frac{V_{target ~\ge~ presc.dose}}{V_{presc.dose}} = \frac{V_{target} ~\cap~ V_{presc.dose}}{V_{presc.dose}}\] -
CN
: (1) Conformation Number defined by Van't Riet and al [4]. It corresponds to conformity index defined by Paddick [5] \[CN = CI_{paddick2000} =\frac{V_{target ~\ge~ presc.dose}^2}{V_{target}~\cdot~V_{presc.dose}} = \frac{(V_{target} ~\cap~ V_{presc.dose})^2}{V_{target}~\cdot~V_{presc.dose}}\] -
NCI
: (1) New conformity index, inverse of CN, defined by Nakamura and al [6] \[NCI =\frac{1}{CN}\] -
DSC
: (1) Dice Similarity Coefficient [7] \[DSC = 2 ~\cdot~\frac{V_{target ~\ge~ presc.dose}}{V_{target} + V_{presc.dose}} = 2 ~\cdot~\frac{V_{target} ~\cap~ V_{presc.dose}}{V_{target} + V_{presc.dose}}\] -
CI.distance
: (1) Conformity Index based on distance defined by Park and al [8] \[CI.distance = \frac{100}{N} \sum^N \frac{dist_{S_{presc.dose}~\to~G_{target}} - dist_{S_{target}~\to~G_{target}}}{dist_{S_{target}~\to~G_{target}}}\] where \(dist_{S_{presc.dose}~\to~G_{target}}\) is the distance between the surface of the prescription dose volume and the centroid of the target, and \(dist_{S_{target}~\to~G_{target}}\) the surface of the target volume and the centroid of the target. \(N\) is the number of directions where the distances are calculated. These directions are computed every 1°. If the centroid is not within the target volume, thenCI.distance = NA
. -
CI.abs_distance
: (1) Conformity Index based on distance defined by Park and al [8] \[CI.abs_distance = \frac{100}{N} \sum^N \frac{|dist_{S_{presc.dose}~\to~G_{target}} - dist_{S_{target}~\to~G_{target}}|}{dist_{S_{target}~\to~G_{target}}}\] -
CDI
: (1) Conformity Distance Index defined by Wu and al [9] \[CDI = 2 \frac{V_{presc.dose} + V_{target} - 2~V_{target ~\ge~ presc.dose}} {S_{target} + S_{presc.dose}} = \frac{V_{presc.dose} + V_{target} - 2~\cdot~V_{target} ~\cap~ V_{presc.dose}} {S_{target} + S_{presc.dose}}\] where \(S_{target}\) is the surface of the target volume and \(S_{presc.dose}\) is the surface of the prescription dose volume. -
CS3
: (1) Triple Point Conformity Scale defined by Ansari and al [10] \[CS3 = \frac{V_{0.95~\cdot~presc.dose} + V_{presc.dose} + V_{1.05~\cdot~presc.dose}}{3~\cdot~V_{target}}\] -
ULF
: (1) Underdosed lesion factor defined by Lefkopoulos and al [11] \[ULF = \frac{V_{target ~<~ presc.dose}}{V_{target}}= \frac{V_{target} ~\cap~ \overline{V_{presc.dose}}}{V_{target}}\] -
OHTF
:(1) Overdosed healthy tissues factor defined by Lefkopoulos and al [11] \[OHTF = \frac{\sum V_{healthy ~\ge~ presc.dose}}{V_{target}} = \frac{\sum V_{healthy} ~\cap~ V_{presc.dose}}{V_{target}} \] -
gCI
: (1) Geometric Conformity Index defined by Lefkopoulos and al [11] \[gCI = ULF + OHTF\] -
COIN
: Conformity Index defined by Baltas and al [12] \[COIN =\frac{V_{target ~\ge~ presc.dose}^2}{V_{target}~\cdot~V_{presc.dose}}~\cdot~ \prod^{N_{healthy}} \left( 1 -\frac{V_{healthy ~\ge~ presc.dose}}{V_{healthy}}\right)\] -
gCOSI
: generalized COSI, defined by Menhel and al [13]. \[gCOSI = 1- \sum^{N_{healthy}} healthy.weight~\cdot~ \frac{\frac{V_{healthy ~\ge~ healthy.tol.dose}}{V_{healthy}}}{\frac{V_{target ~\ge~ presc.dose}}{V_{target}}}\]
\(-~COSI\) : if "COSI" is requested in conformity.indices
,
it returns a dataframe of Critical Organ Scoring Index for each healthy organ,
at each presc.dose
, and for each target. COSI is defined by
Menhel and al [13]
\[COSI = 1-
\frac{\frac{V_{healthy ~\ge~ healthy.tol.dose}}{V_{healthy}}}{\frac{V_{target ~\ge~ presc.dose}}{V_{target}}}\]
\(-~homogeneity\) : dataframe containing
-
HI.RTOG.max_ref
: (1) Homogeneity Index from RTOG defined by E.Shaw [1] \[HI.RTOG.max_-ref = \frac{D_{~max}}{presc.dose}\] where \(D_{max}\) is the maximum dose in the target volume. -
HI.RTOG.5_95
: (1) Homogeneity Index from RTOG [1] \[HI.RTOG.5_-95 = \frac{D.5pc}{D.95pc}\] where \(D.5pc\) and \(D.95pc\) are respectively the doses at 5% and 95% of the target volume in cumulative dose-volume histogram. -
HI.ICRU.max_min
: (1) Homogeneity Index from ICRU report 62 [14] \[HI.ICRU.max_-min = \frac{D_{~max}}{D_{~min}}\] where \(D_{max}\) and \(D_{min}\) are respectively the maximum and the minimum dose in the target volume. -
HI.ICRU.2.98_ref
: (1) Homogeneity Index from ICRU report 83 [15] \[HI.ICRU.2.98_-ref = 100 \frac{D.2pc - D.98pc}{presc.dose}\] where \(D.2pc\) and \(D.98pc\) are respectively the doses at 2% and 98% of the target volume in cumulative dose-volume histogram. -
HI.ICRU.2.98_50
: (1) Homogeneity Index from ICRU report 83 [15] \[HI.ICRU.2.98_-50 = 100 \frac{D.2pc - D.98pc}{D.50pc}\] where \(D.2pc\), \(D.98pc\) and \(D.50pc\) are respectively the doses at 2%, 98% and 50% of the target volume in cumulative dose-volume histogram. -
HI.ICRU.5.95_ref
: (1) Homogeneity Index from ICRU report 83 [15] \[HI.ICRU.5.95_-ref = 100 \frac{D.5pc - D.95pc}{presc.dose}\] where \(D.5pc\) and \(D.95pc\) are respectively the doses at 5% and 95% of the target volume in cumulative dose-volume histogram. -
HI.mayo2010
: (1) Homogeneity Index defined by Mayo and al [16] \[HI.mayo2010 =\sqrt{\frac{D_{~max}}{presc.dose}~\cdot~(1 + \frac{\sigma_D}{presc.dose})}\] where \(D_{max}\) is the maximum dose in the target volume, and \(\sigma_D\) the standard deviation of the dose in the target volume. -
HI.heufelder
: (1) Homogeneity Index defined by Heufelder and al [17] \[HI.heufelder = e^{-0.01~\cdot~ (1-\frac{\mu_D}{presc.dose})^2}~\cdot~ e^{-0.01~\cdot~ (\frac{\sigma_D}{presc.dose})^2}\] where \(\mu_D\) and \(\sigma_D\) are respectively the mean and the standard deviation of the dose in the target volume.
\(-~gradient\) : dataframe containing
-
GI.ratio.50
: Gradient Index based on volumes ratio defined by Paddick and Lippitz [18] \[GI.ratio.50 = \frac {V_{0.5~\cdot~presc.dose}}{V_{presc.dose}}\] -
mGI
: Modified Gradient Index defined by SABR UK Consortium 2019 [2] \[mGI = \frac{V_{0.5~\cdot~presc.dose}}{V_{target ~\ge~ presc.dose}} = \frac{V_{0.5~\cdot~presc.dose}}{V_{target} ~\cap~ V_{presc.dose}}\]
References
[1] Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, Martin L (1993). “Radiation therapy oncology group: Radiosurgery quality assurance guidelines.” International journal of radiation oncology, biology, physics, 27(5), 1231-1239. ISSN 0360-3016, doi:10.1016/0360-3016(93)90548-A.
[2] UK SABR Consortium (Online; accessed 2022-04-01). “Stereotactic Ablative Radiation Therapy (SABR): a resource. v6.1, January 2019.” https://www.sabr.org.uk/wp-content/uploads/2019/04/SABRconsortium-guidelines-2019-v6.1.0.pdf.
[3] Lomax NJ, Scheib SG (2003). “Quantifying the degree of conformity in radiosurgery treatment planning.” International journal of radiation oncology, biology, physics, 55(5), 1409-1419. ISSN 0360-3016, doi:10.1016/S0360-3016(02)04599-6.
[4] Riet AV, Mak AC, Moerland MA, Elders LH, Van der Zee W (1997). “A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate.” International journal of radiation oncology, biology, physics, 37(3), 731-736. ISSN 0360-3016, doi:10.1016/S0360-3016(96)00601-3.
[5] Paddick I (2000). “A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note.” Journal of neurosurgery, 93 Suppl 3, 219-222.
[6] Nakamura J, Verhey L, Smith V, Petti P, Lamborn K, Larson D, Wara W, Mcdermott M, Sneed P (2002). “Dose conformity of Gamma Knife radiosurgery and risk factors for complications.” International journal of radiation oncology, biology, physics, 51, 1313-9. doi:10.1016/S0360-3016(01)01757-6.
[7] Dice LR (1945). “Measures of the Amount of Ecologic Association Between Species.” Ecology, 26(3), 297–302. ISSN 00129658, 19399170.
[8] Park JM, Park S, Ye S, Kim J, Carlson J, Wu H (2014). “New conformity indices based on the calculation of distances between the target volume and the volume of reference isodose.” The British journal of radiology, 87, 20140342. doi:10.1259/bjr.20140342.
[9] Wu Q, Wessels BW, Einstein DB, Maciunas RJ, Kim EY, Kinsella TJ (2003). “Quality of coverage: Conformity measures for stereotactic radiosurgery.” Journal of Applied Clinical Medical Physics, 4, 374-381.
[10] Ansari S, Satpathy S, Singh P, Lad S, Thappa N, Singh B (2018). “A new index: Triple Point Conformity Scale (CS3) and its implication in qualitative evaluation of radiotherapy plan.” Journal of Radiotherapy in Practice, 17, 1-4. doi:10.1017/S1460396917000772.
[11] Lefkopoulos D, Dejean C, balaa ZE, Platoni K, Grandjean P, Foulquier J, Schlienger M (2000). “Determination of dose-volumes parameters to characterise the conformity of stereotactic treatment plans.” In chapter XIII, 356-358. Springer Berlin Heidelberg. ISBN 978-3-540-67176-3, doi:10.1007/978-3-642-59758-9_135.
[12] Baltas D, Kolotas C, Geramani KN, Mould RF, Ioannidis G, Kekchidi M, Zamboglou N (1998). “A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy.” International journal of radiation oncology, biology, physics, 40 2, 515-24. doi:10.1016/s0360-3016(97)00732-3.
[13] Menhel J, Levin D, Alezra D, Symon Z, Pfeffer R (2006). “Assessing the quality of conformal treatment planning: a new tool for quantitative comparison.” Physics in Medicine and Biology, 51(20), 5363–5375.
[14] Landberg T, Chavaudra J, Dobbs J, Gerard J, Hanks G, Horiot J, Johansson K, Möller T, Purdy J, Suntharalingam N, Svensson H (1999). “ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50),3. Absorbed Doses.” Reports of the International Commission on Radiation Units and Measurements, os-32(1), 21-25.
[15] ICRU (2010). “Report 83 : Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT).” Reports of the International Commission on Radiation Units and Measurements, 10(1), 1-3.
[16] Mayo CS, Ding L, Addesa A, Kadish S, Fitzgerald TJ, Moser R (2010). “Initial Experience With Volumetric IMRT (RapidArc) for Intracranial Stereotactic Radiosurgery.” International Journal of Radiation Oncology*Biology*Physics, 78(5), 1457-1466. ISSN 0360-3016, doi:10.1016/j.ijrobp.2009.10.005.
[17] Heufelder J, Zink K, Scholz M, Kramer K, Welker K (2003). “Eine Methode zur automatisierten Bewertung von CT-basierten Bestrahlungsplanen in der perkutanen Strahlentherapie.” Zeitschrift fur Medizinische Physik, 13(4), 231-239. ISSN 0939-3889, doi:10.1078/0939-3889-00175.
[18] Paddick I, Lippitz BE (2006). “A simple dose gradient measurement tool to complement the conformity index.” Journal of neurosurgery, 105 Suppl, 194-201.
All this references are compiled by
-
Kaplan LP, Korreman SS (2021). “A systematically compiled set of quantitative metrics to describe spatial characteristics of radiotherapy dose distributions and aid in treatment planning.” Physica Medica, 90, 164-175. ISSN 1120-1797, doi:10.1016/j.ejmp.2021.09.014. and
-
Patel G, Mandal A, Choudhary S, Mishra R, Shende R (2020). “Plan evaluation indices: A journey of evolution.” Reports of Practical Oncology & Radiotherapy, 25. doi:10.1016/j.rpor.2020.03.002..
See Also
Examples
# loading of toy-patient objects (decrease dxyz and increase beam.nb
# for better result)
step <- 5
patient <- toy.load.patient (modality = c("rtdose", "rtstruct"), roi.name = "eye",
dxyz = rep (step, 3), beam.nb = 3)
indices <- rt.indices.from.roi (patient$rtdose[[1]], patient$rtstruct[[1]],
target.roi.sname = "ptv",
healthy.roi.sname = "eye", presc.dose = 50,
conformity.indices = c("PITV", "PDS", "CI.lomax2003",
"CN", "NCI", "DSC","COIN"),
verbose = FALSE)
indices