rt.indices.from.roi {espadon}R Documentation

Dosimetry, volume, conformity, homogeneity indices from RoI

Description

The rt.indices.from.roi function calculates, from a "volume" class object of modality "rtdose", standard indicators of radiotherapy in relation to the target and healthy RoI, as long as their options are transmitted.

Usage

rt.indices.from.roi(
  vol,
  struct = NULL,
  T.MAT = NULL,
  target.roi.name = NULL,
  target.roi.sname = NULL,
  target.roi.idx = NULL,
  healthy.roi.name = NULL,
  healthy.roi.sname = NULL,
  healthy.roi.idx = NULL,
  presc.dose = NA,
  healthy.tol.dose = NA,
  healthy.weight = 1,
  dosimetry = c("D.min", "D.max", "D.mean", "STD"),
  volume.indices = c("V.tot", "area", "V.prescdose"),
  conformity.indices = c("PITV", "PDS", "CI.lomax2003", "CN", "NCI", "DSC",
    "CI.distance", "CI.abs_distance", "CDI", "CS3", "ULF", "OHTF", "gCI", "COIN",
    "G_COSI", "COSI"),
  homogeneity.indices = c("HI.RTOG.max_ref", "HI.RTOG.5_95", "HI.ICRU.max_min",
    "HI.ICRU.2.98_ref", "HI.ICRU.2.98_50", "HI.ICRU.5.95_ref", "HI.mayo2010",
    "HI.heufelder"),
  gradient.indices = c("GI.ratio.50", "mGI"),
  D.xpc = NULL,
  D.xcc = NULL,
  V.xpc = NULL,
  V.xGy = NULL,
  verbose = TRUE
)

Arguments

vol

"volume" class object, of "rtdose" modality.

struct

"struct" class object.

T.MAT

"t.mat" class object, created by load.patient.from.Rdcm or load.T.MAT. If T.MAT = NULL, struct$ref.pseudo must be equal to vol$ref.pseudo.

target.roi.name

Exact name of target RoI in struct object. By default target.roi.name = NULL. See Details.

target.roi.sname

Name or part of name of target RoI in struct object. By default target.roi.sname = NULL. See Details.

target.roi.idx

Value of the index of target RoI that belong to the struct object. By default target.roi.idx = NULL. See Details.

healthy.roi.name

Exact name of healthy RoI in struct object. By default healthy.roi.name = NULL.

healthy.roi.sname

Name or part of name of healthy RoI in struct object. By default healthy.roi.sname = NULL.

healthy.roi.idx

Value of the index of healthy RoI that belong to the struct object. By default healthy.roi.idx = NULL.

presc.dose

Vector of prescription doses that serve as reference doses for the target RoI.

healthy.tol.dose

Vector of tolerance doses of each healthy RoI.

healthy.weight

Vector of weights, indicating the importance of the healthy RoI.

dosimetry

Vector indicating the requested dose indicators from among 'D.min', 'D.max', 'D.mean' and 'STD'. If D.xpc is different from NULL, it will be added.

volume.indices

Vector indicating the requested volume indices from among 'V.tot', 'V.prescdose' (i.e. volume over presc.dose) and 'area'. If V.xGy is different from NULL, it will be added.

conformity.indices

Vector. Requested conformity indices from among 'PITV', 'PDS', 'CI.lomax2003', 'CN', 'NCI', 'DSC', 'CI.distance', 'CI.abs_distance', 'CDI', 'CS3', 'ULF', 'OHTF', 'gCI', 'COIN', 'COSI' and 'G_COSI'.

homogeneity.indices

Vector. Requested homogeneity indices from among 'HI.RTOG.max_ref', 'HI.RTOG.5_95', 'HI.ICRU.max_min', 'HI.ICRU.2.98_ref', 'HI.ICRU.2.98_50', 'HI.ICRU.5.95_ref', 'HI.mayo2010' and 'HI.heufelder.'

gradient.indices

Vector. Requested gradient indices from among 'GI.ratio.50', 'mGI'.

D.xpc

Vector of the percentage of the volume, for which the dose coverage is requested.

D.xcc

Vector of the volume in \(cm^3\), for which the dose coverage is requested.

V.xpc

Vector of the percentage of the reference dose, received by the volume to be calculated.

V.xGy

Vector of the minimum dose in Gy, received by the volume to be calculated.

verbose

Boolean. if TRUE (default) a progress bar is displayed.

Details

If target.roi.name, target.roi.sname, and target.roi.idx are all set to NULL, all RoI containing 'ptv' (if they exist) are selected.

If target.roi.name, target.roi.sname, and target.roi.idx are all set to NULL,no target RoI are selected.

If healthy.roi.name, healthy.roi.sname, and healthy.roi.idx are all set to NULL, no healthy RoI are selected.

Value

Returns a list containing (if requested)

\(-~dosimetry\) : dataframe containing, for all target and healthy structures:

\(-~volume\) : dataframe containing, for all target and healthy structures, and isodoses:

\(-~conformity\) : dataframe containing, if requested,

\(-~COSI\) : if "COSI" is requested in conformity.indices, it returns a dataframe of Critical Organ Scoring Index for each healthy organ, at each presc.dose, and for each target. COSI is defined by Menhel and al [13] \[COSI = 1- \frac{\frac{V_{healthy ~\ge~ healthy.tol.dose}}{V_{healthy}}}{\frac{V_{target ~\ge~ presc.dose}}{V_{target}}}\]

\(-~homogeneity\) : dataframe containing

\(-~gradient\) : dataframe containing

References

[1] Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, Martin L (1993). “Radiation therapy oncology group: Radiosurgery quality assurance guidelines.” International journal of radiation oncology, biology, physics, 27(5), 1231-1239. ISSN 0360-3016, doi:10.1016/0360-3016(93)90548-A.

[2] UK SABR Consortium (Online; accessed 2022-04-01). “Stereotactic Ablative Radiation Therapy (SABR): a resource. v6.1, January 2019.” https://www.sabr.org.uk/wp-content/uploads/2019/04/SABRconsortium-guidelines-2019-v6.1.0.pdf.

[3] Lomax NJ, Scheib SG (2003). “Quantifying the degree of conformity in radiosurgery treatment planning.” International journal of radiation oncology, biology, physics, 55(5), 1409-1419. ISSN 0360-3016, doi:10.1016/S0360-3016(02)04599-6.

[4] Riet AV, Mak AC, Moerland MA, Elders LH, Van der Zee W (1997). “A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate.” International journal of radiation oncology, biology, physics, 37(3), 731-736. ISSN 0360-3016, doi:10.1016/S0360-3016(96)00601-3.

[5] Paddick I (2000). “A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note.” Journal of neurosurgery, 93 Suppl 3, 219-222.

[6] Nakamura J, Verhey L, Smith V, Petti P, Lamborn K, Larson D, Wara W, Mcdermott M, Sneed P (2002). “Dose conformity of Gamma Knife radiosurgery and risk factors for complications.” International journal of radiation oncology, biology, physics, 51, 1313-9. doi:10.1016/S0360-3016(01)01757-6.

[7] Dice LR (1945). “Measures of the Amount of Ecologic Association Between Species.” Ecology, 26(3), 297–302. ISSN 00129658, 19399170.

[8] Park JM, Park S, Ye S, Kim J, Carlson J, Wu H (2014). “New conformity indices based on the calculation of distances between the target volume and the volume of reference isodose.” The British journal of radiology, 87, 20140342. doi:10.1259/bjr.20140342.

[9] Wu Q, Wessels BW, Einstein DB, Maciunas RJ, Kim EY, Kinsella TJ (2003). “Quality of coverage: Conformity measures for stereotactic radiosurgery.” Journal of Applied Clinical Medical Physics, 4, 374-381.

[10] Ansari S, Satpathy S, Singh P, Lad S, Thappa N, Singh B (2018). “A new index: Triple Point Conformity Scale (CS3) and its implication in qualitative evaluation of radiotherapy plan.” Journal of Radiotherapy in Practice, 17, 1-4. doi:10.1017/S1460396917000772.

[11] Lefkopoulos D, Dejean C, balaa ZE, Platoni K, Grandjean P, Foulquier J, Schlienger M (2000). “Determination of dose-volumes parameters to characterise the conformity of stereotactic treatment plans.” In chapter XIII, 356-358. Springer Berlin Heidelberg. ISBN 978-3-540-67176-3, doi:10.1007/978-3-642-59758-9_135.

[12] Baltas D, Kolotas C, Geramani KN, Mould RF, Ioannidis G, Kekchidi M, Zamboglou N (1998). “A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy.” International journal of radiation oncology, biology, physics, 40 2, 515-24. doi:10.1016/s0360-3016(97)00732-3.

[13] Menhel J, Levin D, Alezra D, Symon Z, Pfeffer R (2006). “Assessing the quality of conformal treatment planning: a new tool for quantitative comparison.” Physics in Medicine and Biology, 51(20), 5363–5375.

[14] Landberg T, Chavaudra J, Dobbs J, Gerard J, Hanks G, Horiot J, Johansson K, Möller T, Purdy J, Suntharalingam N, Svensson H (1999). “ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50),3. Absorbed Doses.” Reports of the International Commission on Radiation Units and Measurements, os-32(1), 21-25.

[15] ICRU (2010). “Report 83 : Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT).” Reports of the International Commission on Radiation Units and Measurements, 10(1), 1-3.

[16] Mayo CS, Ding L, Addesa A, Kadish S, Fitzgerald TJ, Moser R (2010). “Initial Experience With Volumetric IMRT (RapidArc) for Intracranial Stereotactic Radiosurgery.” International Journal of Radiation Oncology*Biology*Physics, 78(5), 1457-1466. ISSN 0360-3016, doi:10.1016/j.ijrobp.2009.10.005.

[17] Heufelder J, Zink K, Scholz M, Kramer K, Welker K (2003). “Eine Methode zur automatisierten Bewertung von CT-basierten Bestrahlungsplanen in der perkutanen Strahlentherapie.” Zeitschrift fur Medizinische Physik, 13(4), 231-239. ISSN 0939-3889, doi:10.1078/0939-3889-00175.

[18] Paddick I, Lippitz BE (2006). “A simple dose gradient measurement tool to complement the conformity index.” Journal of neurosurgery, 105 Suppl, 194-201.

All this references are compiled by

See Also

rt.indices.from.bin.

Examples

# loading of toy-patient objects (decrease dxyz and increase beam.nb 
#  for better result)
step <- 5
patient <- toy.load.patient (modality = c("rtdose", "rtstruct"), roi.name = "eye",
                             dxyz = rep (step, 3), beam.nb = 3)
indices <- rt.indices.from.roi (patient$rtdose[[1]],  patient$rtstruct[[1]],
                                target.roi.sname = "ptv",
                                healthy.roi.sname = "eye", presc.dose = 50,
                                conformity.indices = c("PITV", "PDS", "CI.lomax2003", 
                                                       "CN", "NCI", "DSC","COIN"),
                                verbose = FALSE)
indices

[Package espadon version 1.6.0 Index]