plot_diagnostic_cl {ern} | R Documentation |
Diagnostic plot for R estimation from clinical report data
Description
Diagnostic plot for R estimation from clinical report data
Usage
plot_diagnostic_cl(r.estim, caption = NULL, wrap.plots = TRUE)
Arguments
r.estim |
List. Output of |
caption |
String. Caption to be inserted in the plot.
Default is |
wrap.plots |
Logical. Wrap the plots together into a single ggplot object?
If |
Value
Plots of the clinical data used, the inferred daily incidence and
Rt estimates. If wrap.plots = TRUE
(the default) will return
wrapped plots (with x-axis aligned to facilitate the comaprison)
in a single object,
else will return a list of separate ggplot objects.
A ggplot
object (or a list of ggplot objects
if wrap.plots = FALSE
).
See Also
Examples
# -- THIS EXAMPLE TAKES ABOUT 30 SECONDS TO RUN --
# Estimate Rt
## Not run:
# Load SARS-CoV-2 reported cases in Quebec
# during the Summer 2021
dat <- (ern::cl.data
|> dplyr::filter(
pt == "qc",
dplyr::between(date, as.Date("2021-06-01"), as.Date("2021-09-01"))
)
)
# distributions
dist.repdelay = ern::def_dist(
dist = 'gamma',
mean = 5,
mean_sd = 1,
sd = 1,
sd_sd = 0.1,
max = 10
)
dist.repfrac = ern::def_dist(
dist = "unif",
min = 0.1,
max = 0.3
)
dist.incub = ern::def_dist(
dist = "gamma",
mean = 3.49,
mean_sd = 0.1477,
shape = 8.5,
shape_sd = 1.8945,
max = 8
)
dist.gi = ern::def_dist(
dist = "gamma",
mean = 6,
mean_sd = 0.75,
shape = 2.4,
shape_sd = 0.3,
max = 10
)
# settings
prm.daily <- list(
method = "renewal",
popsize = 8.5e6, # Q3 (July 1) 2022 estimate for Quebec
burn = 500,
iter = 500,
chains = 2,
prior_R0_shape = 1.1, prior_R0_rate = 0.6,
prior_alpha_shape = 1, prior_alpha_rate = 1
)
prm.daily.check <- list(
agg.reldiff.tol = 10
)
prm.smooth <- list(
method = "rollmean",
align = "center",
window = 7
)
prm.R <- list(
iter = 20,
CI = 0.95,
window = 7,
config.EpiEstim = NULL
)
x <- estimate_R_cl(
dat,
dist.repdelay,
dist.repfrac,
dist.incub,
dist.gi,
prm.daily,
prm.daily.check,
prm.smooth,
prm.R
)
# Diagnostic plot for Rt estimates
# from clinical data
g = plot_diagnostic_cl(x)
plot(g)
g2 = plot_diagnostic_cl(x, caption = 'This is your caption', wrap.plots = FALSE)
plot(g2$clinical_data)
plot(g2$inferred_incidence)
plot(g2$Rt)
## End(Not run)
[Package ern version 2.0.0 Index]