eqMI.covtest {equaltestMI} | R Documentation |
Test the equality of two covariance matrices in population
Description
The first step of testing measurement invariance (MI) in multiple-group SEM analysis. The null hypothesis is tested using the method of Lagrange multipliers
Usage
eqMI.covtest(..., lamb0 = NULL)
Arguments
... |
The same arguments as for any lavaan model. See |
lamb0 |
initial coefficients of Lagrange multiplier. If not pre-specified, 0.01 will be used. |
Details
The eqMI.covtest
function is the first step to test MI. Under null hypothesis testing (NHT), a non-significant statistic is generally an overall endorsement of MI. If the null hypothesis is rejected then one may proceed to test other aspects of MI.
Value
The likelihood ratio statistic, degrees of freedom, and p-value of the test.
References
Yuan, K. H., & Chan, W. (2016). Measurement invariance via multigroup SEM: Issues and solutions with chi-square-difference tests. Psychological methods, 21(3), 405-426.
Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.
Examples
data(HolzingerSwineford)
semmodel<-'
L1 =~ V1 + V2 + V3
L2 =~ V4 + V5 + V6
L3 =~ V7 + V8
L4 =~ V9 + V10 + V11
'
cov.test <- eqMI.covtest(model = semmodel,
data = HolzingerSwineford,
group="school")