epoc.validation {epoc} | R Documentation |
epoc.validation
Description
Model validation using random split or cross-validation
Usage
epoc.validation(type=c('pred','concordance'),repl,Y,U,lambdas=NULL,
method='G',thr=1e-10,trace=0,...)
Arguments
type |
|
repl |
The number of replicates |
Y |
mRNA, samples x genes |
U |
CNA, samples x genes |
lambdas |
series of relative |
method |
|
thr |
Threshold for convergence to the LASSO solver |
trace |
Debug information |
... |
Extra parameters passed through to the EPoC solver |
Details
In the case of 'pred'
assess CV prediction error using 10-fold cross-validation with repl
replicates.
In the case of 'concordance'
assess network concordance using random split and Kendall W with repl
replicates.
Value
A list of class plot.EPoC.validation.pred
or plot.EPoC.validation.W
respectively.
References
Rebecka Jörnsten, Tobias Abenius, Teresia Kling, Linnéa Schmidt, Erik Johansson, Torbjörn Nordling, Bodil Nordlander, Chris Sander, Peter Gennemark, Keiko Funa, Björn Nilsson, Linda Lindahl, Sven Nelander. (2011) Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Molecular Systems Biology 7 (to appear)