| Epw {eplusr} | R Documentation |
Read, and modify an EnergyPlus Weather File (EPW)
Description
Reading an EPW file starts with function read_epw(), which parses an EPW
file and returns an Epw object. The parsing process is basically the same
as [EnergyPlus/WeatherManager.cc] in EnergyPlus, with some simplifications.
Details
An EPW file can be divided into two parts, headers and weather data. The
first eight lines of a standard EPW file are normally headers which contains
data of location, design conditions, typical/extreme periods, ground
temperatures, holidays/daylight savings, data periods and other comments.
Epw class provides methods to directly extract those data. For details on
the data structure of EPW file, please see "Chapter 2 - Weather Converter
Program" in EnergyPlus "Auxiliary Programs" documentation. An online version
can be found here.
There are about 35 variables in the core weather data. However, not all of them are used by EnergyPlus. Actually, despite of date and time columns, only 13 columns are used:
dry bulb temperature
dew point temperature
relative humidity
atmospheric pressure
horizontal infrared radiation intensity from sky
direct normal radiation
diffuse horizontal radiation
wind direction
wind speed
present weather observation
present weather codes
snow depth
liquid precipitation depth
Note the hour column in the core weather data corresponds to the period
from (Hour-1)th to (Hour)th. For instance, if the number of interval
per hour is 1, hour of 1 on a certain day corresponds to the period between
00:00:01 to 01:00:00, Hour of 2 corresponds to the period between
01:00:01 to 02:00:00, and etc. Currently, in EnergyPlus the minute column is
not used to determine currently sub-hour time. For instance, if the
number of interval per hour is 2, there is no difference between two rows
with following time columns (a) Hour 1, Minute 0; Hour 1, Minute 30 and (b)
Hour 1, Minute 30; Hour 1, Minute 60. Only the number of rows count.
When EnergyPlus reads the EPW file, both (a) and (b) represent the same time
period: 00:00:00 - 00:30:00 and 00:30:00 - 01:00:00.
Missing data on the weather file used can be summarized in the eplusout.err
file, if DisplayWeatherMissingDataWarnings is turned on in
Output:Diagnostics object. In EnergyPlus, missing data is shown only for
fields that EnergyPlus will use. EnergyPlus will fill some missing data
automatically during simulation. Likewise out of range values are counted for
each occurrence and summarized. However, note that the out of range values
will not be changed by EnergyPlus and could affect your simulation.
Epw class provides methods to easily extract and inspect those abnormal
(missing and out of range) weather data and also to know what kind of actions
that EnergyPlus will perform on those data.
EnergyPlus energy model calibration often uses actual measured weather data.
In order to streamline the error-prone process of creating custom EPW file,
Epw provides methods to direction add, replace the core weather data.
Methods
Public methods
Method new()
Create an Epw object
Usage
Epw$new(path, encoding = "unknown")
Arguments
pathEither a path, a connection, or literal data (either a single string or a raw vector) to an EnergyPlus Weather File (EPW). If a file path, that file usually has a extension
.epw.encodingThe file encoding of input IDD. Should be one of
"unknown","Latin-1" and "UTF-8". The default is "unknown"' which means that the file is encoded in the native encoding.
Details
It takes an EnergyPlus Weather File (EPW) as input and returns an
Epw object.
Returns
An Epw object.
Examples
\dontrun{
# read an EPW file from EnergyPlus website
path_base <- "https://energyplus.net/weather-download"
path_region <- "north_and_central_america_wmo_region_4/USA/CA"
path_file <- "USA_CA_San.Francisco.Intl.AP.724940_TMY3/USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
path_epw <- file.path(path_base, path_region, path_file)
epw <- read_epw(path_epw)
# read an EPW file distributed with EnergyPlus
if (is_avail_eplus(8.8)) {
path_epw <- file.path(
eplus_config(8.8)$dir,
"WeatherData",
"USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
)
epw <- read_epw(path_epw)
}
}
Method path()
Get the file path of current Epw
Usage
Epw$path()
Details
$path() returns the full path of current Epw or NULL if the
Epw object is created using a character vector and not saved
locally.
Returns
NULL or a single string.
Examples
\dontrun{
# get path
epw$path()
}
Method definition()
Get the IddObject object for specified EPW class.
Usage
Epw$definition(class)
Arguments
classA single string.
Details
$definition() returns an IddObject of given EPW class. IddObject
contains all data used for parsing that EPW class.
Currently, all supported EPW classes are:
-
LOCATION -
DESIGN CONDITIONS -
TYPICAL/EXTREME PERIODS -
GROUND TEMPERATURES -
HOLIDAYS/DAYLIGHT SAVINGS -
COMMENTS 1 -
COMMENTS 2 -
DATA PERIODS -
WEATHER DATA
Examples
\dontrun{
# get path
epw$definition("LOCATION")
}
Method location()
Get and modify LOCATION header
Usage
Epw$location( city, state_province, country, data_source, wmo_number, latitude, longitude, time_zone, elevation )
Arguments
cityA string of city name recorded in the
LOCATIONheader.state_provinceA string of state or province name recorded in the
LOCATIONheader.countryA string of country name recorded in the
LOCATIONheader.data_sourceA string of data source recorded in the
LOCATIONheader.wmo_numberA string of WMO (World Meteorological Organization) number recorded in the
LOCATIONheader.latitudeA number of latitude recorded in the
LOCATIONheader. North latitude is positive and south latitude is negative. Should in range[-90, +90].longitudeA number of longitude recorded in the
LOCATIONheader. East longitude is positive and west longitude is negative. Should in range[-180, +180].time_zoneA number of time zone recorded in the
LOCATIONheader. Usually presented as the offset hours from UTC time. Should in range[-12, +14].elevationA number of elevation recorded in the
LOCATIONheader. Should in range[-1000, 9999.9).
Details
$location() takes new values for LOCATION header fields and
returns the parsed values of LOCATION header in a list format. If
no input is given, current LOCATION header value is returned.
Returns
A named list of 9 elements.
Examples
\dontrun{
epw$location()
# modify location data
epw$location(city = "MyCity")
}
Method design_condition()
Get DESIGN CONDITION header
Usage
Epw$design_condition()
Details
$design_condition() returns the parsed values of DESIGN CONDITION
header in a list format with 4 elements:
-
source: A string of source field -
heating: A list, usually of length 16, of the heading design conditions -
cooling: A list, usually of length 32, of the cooling design conditions -
extremes: A list, usually of length 16, of the extreme design conditions
For the meaning of each element, please see ASHRAE Handbook of Fundamentals.
Returns
A named list of 4 elements.
Examples
\dontrun{
epw$design_condition()
}
Method typical_extreme_period()
Get TYPICAL/EXTREME header
Usage
Epw$typical_extreme_period()
Details
$typical_extreme_period() returns the parsed values of TYPICAL/EXTREME PERIOD header in a data.table format with 6
columns:
-
index: Integer type. The index of typical or extreme period record -
name: Character type. The name of typical or extreme period record -
type: Character type. The type of period. Possible value:typicalandextreme -
start_day: Date type with customized formatting. The start day of the period -
start_day: Date type with customized formatting. The end day of the period
Returns
A data.table::data.table() with 6 columns.
Examples
\dontrun{
epw$typical_extreme_period()
}
Method ground_temperature()
Get GROUND TEMPERATURE header
Usage
Epw$ground_temperature()
Details
$ground_temperature() returns the parsed values of GROUND TEMPERATURE
header in a data.table format with 17 columns:
-
index: Integer type. The index of ground temperature record -
depth: Numeric type. The depth of the ground temperature is measured -
soil_conductivity: Numeric type. The soil conductivity at measured depth -
soil_density: Numeric type. The soil density at measured depth -
soil_specific heat: Numeric type. The soil specific heat at measured depth -
JanuarytoDecember: Numeric type. The measured group temperature for each month.
Returns
A data.table::data.table() with 17 columns.
Examples
\dontrun{
epw$ground_temperature()
}
Method holiday()
Get and modify HOLIDAYS/DAYLIGHT SAVINGS header
Usage
Epw$holiday(leapyear, dst, holiday)
Arguments
leapyearEither
TRUEorFALSE.dstA length 2 EPW date specifications identifying the start and end of daylight saving time. For example,
c(3.10, 10.3).holidaya list or a data.frame containing two elements (columns)
nameanddaywherenameare the holiday names anddayare valid EPW date specifications. For example:list(name = c("New Year's Day", "Christmas Day"), day = c("1.1", "25 Dec"))
Details
$holiday() takes new value for leap year indicator, daylight saving time
and holiday specifications, set these new values and returns the parsed values
of HOLIDAYS/DAYLIGHT SAVINGS header. If no input is given, current values
of HOLIDAYS/DAYLIGHT SAVINGS header is returned. It returns a list of 3
elements:
-
leapyear: A single logical vector.TRUEmeans that the weather data contains leap year data -
dst: A Date vector contains the start and end day of daylight saving time -
holiday: A data.table contains 2 columns. If no holiday specified, an empty data.table-
name: Name of the holiday -
day: Date of the holiday
-
Validation process below is performed when changing the leapyear
indicator:
If current record of
leapyearisTRUE, but new input isFALSE, the modification is only conducted when all data periods do not cover Feb 29.If current record of
leapyearisFALSE, but new input isTRUE, the modification is only conducted when TMY data periods do not across Feb, e.g. [01/02, 02/28], [03/01, 12/31]; for AMY data, it is always OK.
The date specifications in dst and holiday should follow the rules of
"Table 2.14: Weather File Date File Interpretation" in
"AuxiliaryPrograms" documentation. eplusr is able to handle all those kinds of
formats automatically. Basically, 5 formats are allowed:
A single integer is interpreted as the Julian day of year. For example,
1,2,3and4will be parsed and presented as1st day,2nd day,3rd dayand4th day.A single number is interpreted as
Month.Day. For example,1.2and5.6will be parsed and presented asJan 02andMay 06.A string giving
MonthName / DayNumber,DayNumber / MonthName, andMonthNumber / DayNumber. A year number can be also included. For example,"Jan/1","05/Dec","7/8","02/10/2019", and"2019/04/05"will be parsed and presented asJan 02,Dec 06,Jul 8,2019-02-10and2019-04-15.A string giving
number Weekday in Month. For example,"2 Sunday in Jan"will be parsed and presented as2th Sunday in January.A string giving
Last Weekday in Month. For example,"last Sunday in Dec"will be parsed and presented asLast Sunday in December.
For convenience, besides all the formats described above, dst and days in
holiday also accept standard Dates input. They will be treated as the same
way as No.3 format described above.
Returns
A named list of 3 elements.
Examples
\dontrun{
epw$holiday()
# add daylight saving time
epw$holiday(dst = c(3.10, 11.3))
}
Method comment1()
Get and modify COMMENT1 header
Usage
Epw$comment1(comment)
Arguments
commentA string of new comments.
Details
$comment1() takes a single string of new comments and replaces the
old comment with input one. If NULL is given, the comment is
removed. Empty string or a string that contains only spaces will be
treated as NULL. If no input is given, current comment is returned.
If no comments exist, NULL is returned.
Returns
A single string.
Examples
\dontrun{
epw$comment1()
epw$comment1("Comment1")
}
Method comment2()
Get and modify COMMENT2 header
Usage
Epw$comment2(comment)
Arguments
commentA string of new comments.
Details
$comment2() takes a single string of new comments and replaces the
old comment with input one. If NULL is given, the comment is
removed. Empty string or a string that contains only spaces will be
treated as NULL. If no input is given, current comment is returned.
If no comments exist, NULL is returned.
Returns
A single string.
Examples
\dontrun{
epw$comment2()
epw$comment2("Comment2")
}
Method num_period()
Get number of data periods in DATA PERIODS header
Usage
Epw$num_period()
Details
$num_period() returns a single positive integer of how many data
periods current Epw contains.
Returns
A single integer.
Examples
\dontrun{
epw$num_period()
}
Method interval()
Get the time interval in DATA PERIODS header
Usage
Epw$interval()
Details
$interval() returns a single positive integer of how many records
of weather data exist in one hour.
Returns
A single integer.
Examples
\dontrun{
epw$interval()
}
Method period()
Get and modify data period meta data in DATA PERIODS header
Usage
Epw$period(period, name, start_day_of_week)
Arguments
periodA positive integer vector identifying the data period indexes.
nameA character vector used as new names for specified data periods. Should have the same length as
index.start_day_of_weekA character vector or an integer vector used as the new start days of week of specified data periods. Should have the same length as
index.
Details
$period() takes a data period index, a new period name and start
day of week specification, and uses that input to replace the data
period's name and start day of week. If no input is given, data
periods in current Epw is returned.
Returns
A data.table with 5 columns:
-
index: Integer type. The index of data period. -
name: Character type. The name of data period. -
start_day_of_week: Character type. The start day of week of data period. -
start_day: Date (EpwDate) type. The start day of data period. -
end_day: Date (EpwDate) type. The end day of data period.
Examples
\dontrun{
# modify data period name
epw$period(1, name = "test")
# change start day of week
epw$period(1, start_day_of_week = 3)
}
Method missing_code()
Get missing code for weather data variables
Usage
Epw$missing_code()
Details
$missing_code() returns a list of 29 elements containing the value
used as missing value identifier for all weather data.
Returns
A named list of 29 elements.
Examples
\dontrun{
epw$missing_code()
}
Method initial_missing_value()
Get initial value for missing data of weather data variables
Usage
Epw$initial_missing_value()
Details
$initial_missing_value() returns a list of 16 elements containing
the initial value used to replace missing values for corresponding
weather data.
Returns
A named list of 16 elements.
Examples
\dontrun{
epw$initial_missing_value()
}
Method range_exist()
Get value ranges for existing values of weather data variables
Usage
Epw$range_exist()
Details
$range_exist() returns a list of 28 elements containing the range
each numeric weather data should fall in. Any values out of this
range are treated as missing.
Returns
A named list of 28 elements.
Examples
\dontrun{
epw$range_exist()
}
Method range_valid()
Get value ranges for valid values of weather data variables
Usage
Epw$range_valid()
Details
$range_valid() returns a list of 28 elements containing the range
each numeric weather data should fall in. Any values out of this
range are treated as invalid.
Returns
A named list of 28 elements.
Examples
\dontrun{
epw$range_valid()
}
Method fill_action()
Get fill actions for abnormal values of weather data variables
Usage
Epw$fill_action(type = c("missing", "out_of_range"))Arguments
typeWhat abnormal type of actions to return. Should be one of
"missing"and"out_of_range". Default:"missing".
Details
$fill_action() returns a list containing actions that EnergyPlus
will perform when certain abnormal data found for corresponding
weather data. There are 3 types of actions in total:
-
do_nothing: All abnormal values are left as they are. -
use_zero: All abnormal values are reset to zeros. -
use_previous: The first abnormal values of variables will be set to the initial missing values. All after are set to previous valid one.
Returns
A named list.
Examples
\dontrun{
epw$fill_action("missing")
epw$fill_action("out_of_range")
}
Method data()
Get weather data
Usage
Epw$data( period = 1L, start_year = NULL, align_wday = TRUE, tz = "UTC", update = FALSE, line = FALSE )
Arguments
periodA single positive integer identifying the data period index. Data periods information can be obtained using
$period()described above.start_yearA positive integer identifying the year of first date time in specified data period. If
NULL, the values in theyearcolumn are used as years ofdatetimecolumn. Default:NULL.align_wdayOnly applicable when
start_yearisNULL. IfTRUE, a year value is automatically calculated for specified data period that compliance with the start day of week value specified inDATA PERIODSheader.tzA valid time zone to be assigned to the
datetimecolumn. All valid time zone names can be obtained usingOlsonNames(). Default:"UTC".updateIf
TRUE, theyearcolumn are updated according to the newly createddatetimecolumn usingstart_year. IfFALSE, original year data in theEpwobject is kept. Default:FALSE.lineIf
TRUE, a column namedlineis prepended indicating the line numbers where data occur in the actual EPW file. Default:FALSE.
Details
$data() returns weather data of specific data period.
Usually, EPW file downloaded from EnergyPlus website
contains TMY weather data. As years of weather data is not
consecutive, it may be more convenient to align the year values to be
consecutive, which will makes it possible to direct analyze and plot
weather data. The start_year argument in $data() method can help
to achieve this. However, randomly setting the year may result in a
date time series that does not have the same start day of week as
specified in the DATA PERIODS header. eplusr provides a simple
solution for this. By setting year to NULL and align_wday to
TRUE, eplusr will calculate a year value (from current year
backwards) for each data period that compliance with the start day of
week restriction.
Note that if current data period contains AMY data and start_year
is given, a warning is given because the actual year values will be
overwritten by input start_year. An error is given if:
Using input
start_yearintroduces invalid date time. This may happen when weather data contains leap year but inputstart_yearis not a leap year.Applying specified time zone specified using
tzintroduces invalid date time.
Returns
A data.table::data.table() of 36 columns.
Examples
\dontrun{
# get weather data
str(epw$data())
# get weather data but change the year to 2018
# the year column is not changed by default, only the returned datetime column
head(epw$data(start_year = 2018)$datetime)
str(epw$data(start_year = 2018)$year)
# you can update the year column too
head(epw$data(start_year = 2018, update = TRUE)$year)
# change the time zone of datetime column in the returned weather data
attributes(epw$data()$datetime)
attributes(epw$data(tz = "Etc/GMT+8")$datetime)
}
Method abnormal_data()
Get abnormal weather data
Usage
Epw$abnormal_data(
period = 1L,
cols = NULL,
keep_all = TRUE,
type = c("both", "missing", "out_of_range")
)Arguments
periodA single positive integer identifying the data period index. Data periods information can be obtained using
$period()described above.colsA character vector identifying what data columns, i.e. all columns except
datetime,year,month,day,hourminute, and character columns, to search abnormal values. IfNULL, all data columns are used. Default:NULL.keep_allIf
TRUE, all columns are returned. IfFALSE, onlyline,datetime,year,month,day,hourandminute, together with columns specified incolsare returned. Default:TRUEtypeWhat abnormal type of data to return. Should be one of
"all","missing"and"out_of_range". Default:"all".
Details
$abnormal_data() returns abnormal data of specific data period.
Basically, there are 2 types of abnormal data in Epw, i.e. missing
values and out-of-range values. Sometimes, it may be useful to
extract and inspect those data especially when inserting measured
weather data. $abnormal_data() does this.
In the returned data.table::data.table(), a column named line
is created indicating the line numbers where abnormal data occur in
the actual EPW file.
Returns
Examples
\dontrun{
epw$abnormal_data()
# only check if there are any abnormal values in air temperature and
# liquid precipitation rate
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"))
# save as above, but only return date time columns plus those 2 columns
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"),
keep_all = FALSE
)
# same as above, but only check for missing values
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"),
type = "missing"
)
# same as above, but only check for out-of-range values
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"),
type = "out_of_range"
)
}
Method redundant_data()
Get redundant weather data
Usage
Epw$redundant_data()
Details
$redundant_data() returns weather data in Epw object that do not
belong to any data period. This data can be further removed using
$purge()'
method described below.
In the returned data.table::data.table(), a column named line
is created indicating the line numbers where redundant data occur in
the actual EPW file.
Returns
A data.table::data.table() of 37 columns.
Examples
\dontrun{
epw$redundant_data()
}
Method make_na()
Convert abnormal data into NAs
Usage
Epw$make_na(missing = FALSE, out_of_range = FALSE)
Arguments
missingIf
TRUE, missing values are included. Default:FALSE.out_of_rangeIf
TRUE, out-of-range values are included. Default:FALSE.
Details
$make_na() converts specified abnormal data into NAs in specified
data period. This makes it easier to find abnormal data directly
using is.na() instead of using
$missing_code()
$make_na() and
$fill_abnormal()
are reversible, i.e.
$make_na() can be used to counteract the effects introduced by
$make_na(),
and vise a versa.
Note that $make_na modify the weather data in-place, meaning
that the returned data from
$data()
and
$abnormal_data()
may be different after calling $make_na().
Returns
The modified Epw object itself, invisibly.
Examples
\dontrun{
# turn all missing values into NAs
summary(epw$data()$liquid_precip_rate)
epw$make_na(missing = TRUE)
summary(epw$data()$liquid_precip_rate)
}
Method fill_abnormal()
Fill abnormal data using prescribed pattern
Usage
Epw$fill_abnormal(missing = FALSE, out_of_range = FALSE, special = FALSE)
Arguments
missingIf
TRUE, missing values are included. Default:FALSE.out_of_rangeIf
TRUE, out-of-range values are included. Default:FALSE.specialIf
TRUE, abnormal data are filled using corresponding actions listed$fill_action(). IfFALSE, all abnormal data are fill with missing code described in$missing_code().
Details
$fill_abnormal() fills specified abnormal data using corresponding
actions listed in
$fill_action().
For what kinds of actions to be performed, please see
$fill_action().
method described above. Note that only if special is TRUE,
special actions listed in $fill_action() is performed. If special
is FALSE, all abnormal data, including both missing values and
out-of-range values, are filled with corresponding missing codes.
$make_na()
and $fill_abnormal() are reversible, i.e.
$make_na()
can be used to counteract the effects introduced by
$fill_abnormal(), and vise a versa.
Note that $fill_abnormal modify the weather data in-place,
meaning that the returned data from
$data()
and
$abnormal_data()
may be different after calling $fill_abnormal().
Returns
The modified Epw object itself, invisibly.
Examples
\dontrun{
# turn all missing values into NAs
summary(epw$data()$liquid_precip_rate)
epw$fill_abnormal(missing = TRUE)
summary(epw$data()$liquid_precip_rate)
}
Method add_unit()
Add units to weather data variables
Usage
Epw$add_unit()
Details
$add_unit() assigns units to numeric weather data using
units::set_units() if applicable.
$add_unit()
and
$drop_unit()
are reversible, i.e.
$add_unit()
can be used to counteract the effects introduced by
$drop_unit(),
and vise a versa.
Note that $add_unit modify the weather data in-place,
meaning that the returned data from
$data()
and
$abnormal_data()
may be different after calling $add_unit().
Returns
The modified Epw object itself, invisibly.
Examples
\dontrun{
# get weather data with units
epw$add_unit()
head(epw$data())
# with units specified, you can easily perform unit conversion using units
# package
t_dry_bulb <- epw$data()$dry_bulb_temperature
units(t_dry_bulb) <- with(units::ud_units, "kelvin")
head(t_dry_bulb)
}
Method drop_unit()
Remove units in weather data variables
Usage
Epw$drop_unit()
Details
$drop_unit() removes all units of numeric weather data.
$add_unit()
and
$drop_unit()
are reversible, i.e.
$add_unit()
can be used to counteract the effects introduced by
$drop_unit(),
and vise a versa.
Note that $add_unit modify the weather data in-place,
meaning that the returned data from
$data()
and
$abnormal_data()
may be different after calling $add_unit().
Returns
The modified Epw object itself, invisibly.
Examples
\dontrun{
epw$drop_unit()
epw$data()
}
Method purge()
Delete redundant weather data observations
Usage
Epw$purge()
Details
$purge() deletes weather data in Epw object that do not belong to
any data period.
Returns
The modified Epw object itself, invisibly.
Examples
\dontrun{
epw$purge()
}
Method add()
Add a data period
Usage
Epw$add( data, realyear = FALSE, name = NULL, start_day_of_week = NULL, after = 0L )
Arguments
dataA
data.table::data.table()of new weather data to add or set. Validation is performed according to rules described above.realyearWhether input data is AMY data. Default:
FALSE.nameA new string used as name of added or set data period. Should not be the same as existing data period names. If
NULL, it is generated automatically in formatData,Data_1and etc., based on existing data period names. Default:NULLstart_day_of_weekA single integer or character specifying start day of week of input data period. If
NULL, Sunday is used for TMY data and the actual start day of week is used for AMY data. Default:NULL.afterA single integer identifying the index of data period where input new data period to be inserted after. IF
0, input new data period will be the first data period. Default:0.
Details
$add() adds a new data period into current Epw object at
specified position.
The validity of input data is checked before adding according to rules following:
Column
datetimeexists and has type ofPOSIXct. Note that time zone of input date time will be reset toUTC.It assumes that input data is already sorted, i.e. no further sorting is made during validation. This is because when input data is TMY data, there is no way to properly sort input data rows only using
datetimecolumn.Number of data records per hour should be consistent across input data.
Input number of data records per hour should be the same as existing data periods.
The date time of input data should not overlap with existing data periods.
Input data should have all 29 weather data columns with correct types. The
year,month,day, andminutecolumn are not compulsory. They will be created according to values in thedatetimecolumn. Existing values will be overwritten.
Returns
The modified Epw object itself, invisibly.
Examples
\dontrun{
# will fail since date time in input data has already been covered by
# existing data period
try(epw$add(epw$data()), silent = TRUE)
}
Method set()
Replace a data period
Usage
Epw$set( data, realyear = FALSE, name = NULL, start_day_of_week = NULL, period = 1L )
Arguments
dataA
data.table::data.table()of new weather data to add or set. Validation is performed according to rules described above.realyearWhether input data is AMY data. Default:
FALSE.nameA new string used as name of added or set data period. Should not be the same as existing data period names. If
NULL, it is generated automatically in formatData,Data_1and etc., based on existing data period names. Default:NULLstart_day_of_weekA single integer or character specifying start day of week of input data period. If
NULL, Sunday is used for TMY data and the actual start day of week is used for AMY data. Default:NULL.periodA single integer identifying the index of data period to set.
Details
$set() replaces existing data period using input new weather data.
The validity of input data is checked before replacing according to rules following:
Column
datetimeexists and has type ofPOSIXct. Note that time zone of input date time will be reset toUTC.It assumes that input data is already sorted, i.e. no further sorting is made during validation. This is because when input data is TMY data, there is no way to properly sort input data rows only using
datetimecolumn.Number of data records per hour should be consistent across input data.
Input number of data records per hour should be the same as existing data periods.
The date time of input data should not overlap with existing data periods.
Input data should have all 29 weather data columns with right types. The
year,month,day, andminutecolumn are not compulsory. They will be created according to values in thedatetimecolumn. Existing values will be overwritten.
Returns
The modified Epw object itself, invisibly.
Examples
\dontrun{
# change the weather data
epw$set(epw$data())
}
Method del()
Delete a data period
Usage
Epw$del(period)
Arguments
periodA single integer identifying the index of data period to set.
Details
$del() removes a specified data period. Note that an error will be
given if current Epw only contains one data period.
Returns
The modified Epw object itself, invisibly.
Method is_unsaved()
Check if there are unsaved changes in current Epw
Usage
Epw$is_unsaved()
Details
$is_unsaved() returns TRUE if there are modifications on the
Epw object since it was read or since last time it was saved, and
returns FALSE otherwise.
Returns
A single logical value of TRUE or FALSE.
Examples
\dontrun{
epw$is_unsaved()
}
Method save()
Save Epw object as an EPW file
Usage
Epw$save(path = NULL, overwrite = FALSE, purge = FALSE, format_digit = TRUE)
Arguments
pathA path where to save the weather file. If
NULL, the path of the weather file itself is used. Default:NULL.overwriteWhether to overwrite the file if it already exists. Default is
FALSE.purgeWhether to remove redundant data when saving. Default:
FALSE.format_digitWhether to remove trailing digits in weather data. Default:
TRUE.
Details
$save() saves current Epw to an EPW file. Note that if missing
values and out-of-range values are converted to NAs using
$make_na(),
they will be filled with corresponding missing codes during saving.
Returns
A length-one character vector, invisibly.
Examples
\dontrun{
# save the weather file
epw$save(file.path(tempdir(), "weather.epw"), overwrite = TRUE)
}
Method print()
Print Idf object
Usage
Epw$print()
Details
$print() prints the Epw object, including location, elevation,
data source, WMO station, leap year indicator, interval and data
periods.
Returns
The Epw object itself, invisibly.
Examples
\dontrun{
epw$print()
}
Method clone()
The objects of this class are cloneable with this method.
Usage
Epw$clone(deep = TRUE)
Arguments
deepWhether to make a deep clone.
Author(s)
Hongyuan Jia
Examples
## ------------------------------------------------
## Method `Epw$new`
## ------------------------------------------------
## Not run:
# read an EPW file from EnergyPlus website
path_base <- "https://energyplus.net/weather-download"
path_region <- "north_and_central_america_wmo_region_4/USA/CA"
path_file <- "USA_CA_San.Francisco.Intl.AP.724940_TMY3/USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
path_epw <- file.path(path_base, path_region, path_file)
epw <- read_epw(path_epw)
# read an EPW file distributed with EnergyPlus
if (is_avail_eplus(8.8)) {
path_epw <- file.path(
eplus_config(8.8)$dir,
"WeatherData",
"USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
)
epw <- read_epw(path_epw)
}
## End(Not run)
## ------------------------------------------------
## Method `Epw$path`
## ------------------------------------------------
## Not run:
# get path
epw$path()
## End(Not run)
## ------------------------------------------------
## Method `Epw$definition`
## ------------------------------------------------
## Not run:
# get path
epw$definition("LOCATION")
## End(Not run)
## ------------------------------------------------
## Method `Epw$location`
## ------------------------------------------------
## Not run:
epw$location()
# modify location data
epw$location(city = "MyCity")
## End(Not run)
## ------------------------------------------------
## Method `Epw$design_condition`
## ------------------------------------------------
## Not run:
epw$design_condition()
## End(Not run)
## ------------------------------------------------
## Method `Epw$typical_extreme_period`
## ------------------------------------------------
## Not run:
epw$typical_extreme_period()
## End(Not run)
## ------------------------------------------------
## Method `Epw$ground_temperature`
## ------------------------------------------------
## Not run:
epw$ground_temperature()
## End(Not run)
## ------------------------------------------------
## Method `Epw$holiday`
## ------------------------------------------------
## Not run:
epw$holiday()
# add daylight saving time
epw$holiday(dst = c(3.10, 11.3))
## End(Not run)
## ------------------------------------------------
## Method `Epw$comment1`
## ------------------------------------------------
## Not run:
epw$comment1()
epw$comment1("Comment1")
## End(Not run)
## ------------------------------------------------
## Method `Epw$comment2`
## ------------------------------------------------
## Not run:
epw$comment2()
epw$comment2("Comment2")
## End(Not run)
## ------------------------------------------------
## Method `Epw$num_period`
## ------------------------------------------------
## Not run:
epw$num_period()
## End(Not run)
## ------------------------------------------------
## Method `Epw$interval`
## ------------------------------------------------
## Not run:
epw$interval()
## End(Not run)
## ------------------------------------------------
## Method `Epw$period`
## ------------------------------------------------
## Not run:
# modify data period name
epw$period(1, name = "test")
# change start day of week
epw$period(1, start_day_of_week = 3)
## End(Not run)
## ------------------------------------------------
## Method `Epw$missing_code`
## ------------------------------------------------
## Not run:
epw$missing_code()
## End(Not run)
## ------------------------------------------------
## Method `Epw$initial_missing_value`
## ------------------------------------------------
## Not run:
epw$initial_missing_value()
## End(Not run)
## ------------------------------------------------
## Method `Epw$range_exist`
## ------------------------------------------------
## Not run:
epw$range_exist()
## End(Not run)
## ------------------------------------------------
## Method `Epw$range_valid`
## ------------------------------------------------
## Not run:
epw$range_valid()
## End(Not run)
## ------------------------------------------------
## Method `Epw$fill_action`
## ------------------------------------------------
## Not run:
epw$fill_action("missing")
epw$fill_action("out_of_range")
## End(Not run)
## ------------------------------------------------
## Method `Epw$data`
## ------------------------------------------------
## Not run:
# get weather data
str(epw$data())
# get weather data but change the year to 2018
# the year column is not changed by default, only the returned datetime column
head(epw$data(start_year = 2018)$datetime)
str(epw$data(start_year = 2018)$year)
# you can update the year column too
head(epw$data(start_year = 2018, update = TRUE)$year)
# change the time zone of datetime column in the returned weather data
attributes(epw$data()$datetime)
attributes(epw$data(tz = "Etc/GMT+8")$datetime)
## End(Not run)
## ------------------------------------------------
## Method `Epw$abnormal_data`
## ------------------------------------------------
## Not run:
epw$abnormal_data()
# only check if there are any abnormal values in air temperature and
# liquid precipitation rate
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"))
# save as above, but only return date time columns plus those 2 columns
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"),
keep_all = FALSE
)
# same as above, but only check for missing values
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"),
type = "missing"
)
# same as above, but only check for out-of-range values
epw$abnormal_data(cols = c("dry_bulb_temperature", "liquid_precip_rate"),
type = "out_of_range"
)
## End(Not run)
## ------------------------------------------------
## Method `Epw$redundant_data`
## ------------------------------------------------
## Not run:
epw$redundant_data()
## End(Not run)
## ------------------------------------------------
## Method `Epw$make_na`
## ------------------------------------------------
## Not run:
# turn all missing values into NAs
summary(epw$data()$liquid_precip_rate)
epw$make_na(missing = TRUE)
summary(epw$data()$liquid_precip_rate)
## End(Not run)
## ------------------------------------------------
## Method `Epw$fill_abnormal`
## ------------------------------------------------
## Not run:
# turn all missing values into NAs
summary(epw$data()$liquid_precip_rate)
epw$fill_abnormal(missing = TRUE)
summary(epw$data()$liquid_precip_rate)
## End(Not run)
## ------------------------------------------------
## Method `Epw$add_unit`
## ------------------------------------------------
## Not run:
# get weather data with units
epw$add_unit()
head(epw$data())
# with units specified, you can easily perform unit conversion using units
# package
t_dry_bulb <- epw$data()$dry_bulb_temperature
units(t_dry_bulb) <- with(units::ud_units, "kelvin")
head(t_dry_bulb)
## End(Not run)
## ------------------------------------------------
## Method `Epw$drop_unit`
## ------------------------------------------------
## Not run:
epw$drop_unit()
epw$data()
## End(Not run)
## ------------------------------------------------
## Method `Epw$purge`
## ------------------------------------------------
## Not run:
epw$purge()
## End(Not run)
## ------------------------------------------------
## Method `Epw$add`
## ------------------------------------------------
## Not run:
# will fail since date time in input data has already been covered by
# existing data period
try(epw$add(epw$data()), silent = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `Epw$set`
## ------------------------------------------------
## Not run:
# change the weather data
epw$set(epw$data())
## End(Not run)
## ------------------------------------------------
## Method `Epw$is_unsaved`
## ------------------------------------------------
## Not run:
epw$is_unsaved()
## End(Not run)
## ------------------------------------------------
## Method `Epw$save`
## ------------------------------------------------
## Not run:
# save the weather file
epw$save(file.path(tempdir(), "weather.epw"), overwrite = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `Epw$print`
## ------------------------------------------------
## Not run:
epw$print()
## End(Not run)