| EplusSql {eplusr} | R Documentation | 
Retrieve Simulation Outputs Using EnergyPlus SQLite Output File
Description
EplusSql class wraps SQL queries that can retrieve simulation outputs using
EnergyPlus SQLite output file.
Details
SQLite output is an optional output format for EnergyPlus. It will be created
if there is an object in class Output:SQLite. If the value of field
Option in class Output:SQLite is set to "SimpleAndTabular", then
database tables related to the tabular reports will be also included.
There are more than 30 tables in the SQLite output file which contains all of
the data found in EnergyPlus's tabular output files, standard variable and
meter output files, plus a number of reports that are found in the
eplusout.eio output file. The full description for SQLite outputs can be
found in the EnergyPlus "Output Details and Examples" documentation.  Note
that all column names of tables returned have been tidied, i.e. "KeyValue"
becomes "key_value", "IsMeter" becomes "is_meter" and etc.
EplusSql class makes it possible to directly retrieve simulation results
without creating an EplusJob object. EplusJob can only get simulation
outputs after the job was successfully run before.
However, it should be noted that, unlike EplusJob, there is no checking on
whether the simulation is terminated or completed unsuccessfully or, the
parent Idf has been changed since last simulation. This means that you may
encounter some problems when retrieve data from an unsuccessful simulation.
It is suggested to carefully go through the .err file using read_err() to
make sure the output data in the SQLite is correct and reliable.
Methods
Public methods
Method new()
Create an EplusSql object
Usage
EplusSql$new(sql)
Arguments
- sql
- A path to an local EnergyPlus SQLite output file. 
Returns
An EplusSql object.
Examples
\dontrun{
if (is_avail_eplus("8.8")) {
    idf_name <- "1ZoneUncontrolled.idf"
    epw_name <-  "USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
    idf_path <- path_eplus_example("8.8", idf_name)
    epw_path <- path_eplus_weather("8.8", epw_name)
    # copy to tempdir and run the model
    idf <- read_idf(idf_path)
    idf$run(epw_path, tempdir(), echo = FALSE)
    # create from local file
    sql <- eplus_sql(file.path(tempdir(), "1ZoneUncontrolled.sql"))
}
}
Method path()
Get the file path of current EpwSql object
Usage
EplusSql$path()
Details
$path() returns the path of EnergyPlus SQLite file.
Returns
A single string.
Examples
\dontrun{
# get path
sql$path()
}
Method path_idf()
Get the path of corresponding IDF file
Usage
EplusSql$path_idf()
Details
$path_idf() returns the IDF file path with same name as the SQLite
file in the same folder. NULL is returned if no corresponding IDF
is found.
Returns
NULL or a single string.
Examples
\dontrun{
# get path
sql$path_idf()
}
Method list_table()
List all table names in current EnergyPlus SQL output
Usage
EplusSql$list_table()
Details
$list_table() returns all available table and view names in the
EnergyPlus SQLite file.
Returns
A character vector
Examples
\dontrun{
sql$list_table()
}
Method read_table()
Read a single table from current EnergyPlus SQL output
Usage
EplusSql$read_table(name)
Arguments
- name
- A single string specifying the name of table to read. 
Details
$read_table() takes a valid table name of those from
$list_table()
and returns that table data in a data.table::data.table() format.
Returns
Examples
\dontrun{
# read a specific table
sql$read_table("Zones")
}
Method report_data_dict()
Read report data dictionary from current EnergyPlus SQL output
Usage
EplusSql$report_data_dict()
Details
$report_data_dict() returns a data.table::data.table() which
contains all information about report data.
For details on the meaning of each columns, please see "2.20.2.1 ReportDataDictionary Table" in EnergyPlus "Output Details and Examples" documentation.
Returns
A data.table::data.table() of 10 columns:
-  report_data_dictionary_index: The integer used to link the dictionary data to the variable data. Mainly useful when joining different tables
-  is_meter: Whether report data is a meter data. Possible values:0and1
-  timestep_type: Type of data timestep. Possible values:ZoneandHVAC System
-  key_value: Key name of the data
-  name: Actual report data name
-  reporting_frequency:
-  schedule_name: Name of the the schedule that controls reporting frequency.
-  units: The data units
Examples
\dontrun{
sql$report_data_dict()
}
Method report_data()
Read report data
Usage
EplusSql$report_data( key_value = NULL, name = NULL, year = NULL, tz = "UTC", case = "auto", all = FALSE, wide = FALSE, period = NULL, month = NULL, day = NULL, hour = NULL, minute = NULL, interval = NULL, simulation_days = NULL, day_type = NULL, environment_name = NULL )
Arguments
- key_value
- A character vector to identify key values of the data. If - NULL, all keys of that variable will be returned.- key_valuecan also be data.frame that contains- key_valueand- namecolumns. In this case,- nameargument in- $report_data()is ignored. All available- key_valuefor current simulation output can be obtained using- $report_data_dict(). Default:- NULL.
- name
- A character vector to identify names of the data. If - NULL, all names of that variable will be returned. If- key_valueis a data.frame,- nameis ignored. All available- namefor current simulation output can be obtained using- $report_data_dict(). Default:- NULL.
- year
- Year of the date time in column - datetime. If- NULL, it will calculate a year value that meets the start day of week restriction for each environment. Default:- NULL.
- tz
- Time zone of date time in column - datetime. Default:- "UTC".
- case
- A single string used to add a character column - casein the returned results to indicate the case of this simulation. If- NULL, no column is added. If- "auto", the name of the IDF file without extension is used. Default:- "auto".
- all
- If - TRUE, extra columns are also included in the returned- data.table::data.table().
- wide
- If - TRUE, the output is formatted in the same way as standard EnergyPlus csv output file.
- period
- A Date or POSIXt vector used to specify which time period to return. The year value does not matter and only month, day, hour and minute value will be used when subsetting. If - NULL, all time period of data is returned. Default:- NULL.
- month, day, hour, minute
- Each is an integer vector for month, day, hour, minute subsetting of - datetimecolumn when querying on the SQL database. If- NULL, no subsetting is performed on those components. All possible- month,- day,- hourand- minutecan be obtained using- $read_table("Time"). Default:- NULL.
- interval
- An integer vector used to specify which interval length of report to extract. If - NULL, all interval will be used. Default:- NULL.
- simulation_days
- An integer vector to specify which simulation day data to extract. Note that this number resets after warmup and at the beginning of an environment period. All possible - simulation_dayscan be obtained using- $read_table("Time"). If- NULL, all simulation days will be used. Default:- NULL.
- day_type
- A character vector to specify which day type of data to extract. All possible day types are: - Sunday,- Monday,- Tuesday,- Wednesday,- Thursday,- Friday,- Saturday,- Holiday,- SummerDesignDay,- WinterDesignDay,- CustomDay1, and- CustomDay2. All possible values for current simulation output can be obtained using- $read_table("Time"). A few grouped options are also provided:-  "Weekday": All working days, i.e. from Monday to Friday
-  "Weekend": Saturday and Sunday
-  "DesignDay": Equivalent to"SummerDesignDay"plus"WinterDesignDay"
-  "CustomDay": CustomDay1 and CustomDay2
-  "SpecialDay": Equivalent to"DesignDay"plus"CustomDay"
-  "NormalDay": Equivalent to"Weekday"and"Weekend"plus"Holiday"
 
-  
- environment_name
- A character vector to specify which environment data to extract. If - NULL, all environment data are returned. Default:- NULL. All possible- environment_namefor current simulation output can be obtained using:- $read_table("EnvironmentPeriods")
Details
$report_data() extracts the report data in a
data.table::data.table() using key values, variable names and other
specifications.
$report_data() can also directly take all or subset output from
$report_data_dict() as input, and extract all data specified.
The returned column numbers varies depending on all argument.
-  allisFALSE, the returneddata.table::data.table()has 6 columns:-  case: Simulation case specified usingcaseargument
-  datetime: The date time of simulation result
-  key_value: Key name of the data
-  name: Actual report data name
-  units: The data units
-  value: The data value
 
-  
-  allisTRUE, besides columns described above, extra columns are also included:-  month: The month of reported date time
-  day: The day of month of reported date time
-  hour: The hour of reported date time
-  minute: The minute of reported date time
-  dst: Daylight saving time indicator. Possible values:0and1
-  interval: Length of reporting interval
-  simulation_days: Day of simulation
-  day_type: The type of day, e.g.Monday,Tuesdayand etc.
-  environment_period_index: The indices of environment.
-  environment_name: A text string identifying the environment.
-  is_meter: Whether report data is a meter data. Possible values:0and1
-  type: Nature of data type with respect to state. Possible values:SumandAvg
-  index_group: The report group, e.g.Zone,System
-  timestep_type: Type of data timestep. Possible values:ZoneandHVAC System
-  reporting_frequency: The reporting frequency of the variable, e.g.HVAC System Timestep,Zone Timestep.
-  schedule_name: Name of the the schedule that controls reporting frequency.
 
-  
With the datetime column, it is quite straightforward to apply time-series
analysis on the simulation output. However, another painful thing is that
every simulation run period has its own Day of Week for Start Day. Randomly
setting the year may result in a date time series that does not have
the same start day of week as specified in the RunPeriod objects.
eplusr provides a simple solution for this. By setting year to NULL,
which is the default behavior, eplusr will calculate a year value (from
year 2017 backwards) for each run period that compliances with the start
day of week restriction.
It is worth noting that EnergyPlus uses 24-hour clock system where 24 is only used to denote midnight at the end of a calendar day. In EnergyPlus output, "00:24:00" with a time interval being 15 mins represents a time period from "00:23:45" to "00:24:00", and similarly "00:15:00" represents a time period from "00:24:00" to "00:15:00" of the next day. This means that if current day is Friday, day of week rule applied in schedule time period "00:23:45" to "00:24:00" (presented as "00:24:00" in the output) is also Friday, but not Saturday. However, if you try to get the day of week of time "00:24:00" in R, you will get Saturday, but not Friday. This introduces inconsistency and may cause problems when doing data analysis considering day of week value.
With wide equals TRUE, $report_data() will format the simulation output
in the same way as standard EnergyPlus csv output file. Sometimes this can be
useful as there may be existing tools/workflows that depend on this format.
When both wide and all are TRUE, columns of runperiod environment names
and date time components are also returned, including:
environment_period_index", "environment_name, simulation_days,
datetime, month, day, hour, minute, day_type.
For convenience, input character arguments matching in
$report_data() are case-insensitive.
Returns
Examples
\dontrun{
# read all report data
sql$report_data()
# specify output variables using report data dictionary
dict <- sql$report_data_dict()
sql$report_data(dict[units == "C"])
# specify output variables using 'key_value' and 'name'
sql$report_data("environment", "site outdoor air drybulb temperature")
# explicitly specify year value and time zone
sql$report_data(dict[1], year = 2020, tz = "Etc/GMT+8")
# explicitly specify case name
sql$report_data(dict[1], case = "example")
# get all possible columns
sql$report_data(dict[1], all = TRUE)
# return in a format that is similar as EnergyPlus CSV output
sql$report_data(dict[1], wide = TRUE)
# return in a format that is similar as EnergyPlus CSV output with
# extra columns
sql$report_data(dict[1], wide = TRUE, all = TRUE)
# only get data at the working hour on the first Monday
sql$report_data(dict[1], hour = 8:18, day_type = "monday", simulation_days = 1:7)
# only get specified run period data
sql$read_table("EnvironmentPeriods") # possible environment name
sql$report_data(dict[1], environment_name = "San Francisco Intl Ap CA USA TMY3 WMO#=724940")
# can also be done using 'environment_period_index' column
sql$report_data(dict[1], all = TRUE)[environment_period_index == 3L]
}
Method tabular_data()
Read tabular data
Usage
EplusSql$tabular_data( report_name = NULL, report_for = NULL, table_name = NULL, column_name = NULL, row_name = NULL, case = "auto", wide = FALSE, string_value = !wide )
Arguments
- report_name, report_for, table_name, column_name, row_name
- Each is a character vector for subsetting when querying the SQL database. For the meaning of each argument, please see the description above. 
- case
- A single string used to add a character column - casein the returned results to indicate the case of this simulation. If- NULL, no column is added. If- "auto", the name of the IDF file without extension is used. Default:- "auto".
- wide
- If - TRUE, each table will be converted into the similar format as it is shown in EnergyPlus HTML output file. Default:- FALSE.
- string_value
- Only applicable when - wideis- TRUE. If- string_valueis- FALSE, instead of keeping all values as characters, values in possible numeric columns are converted into numbers. Default: the opposite of- wide. Possible numeric columns indicate column that:- columns that have associated units 
- columns that contents numbers 
 
Details
$tabular_data() extracts the tabular data in a
data.table::data.table() using report, table, column and row name
specifications. The returned data.table::data.table() has
9 columns:
-  case: Simulation case specified usingcaseargument
-  index: Tabular data index
-  report_name: The name of the report that the record belongs to
-  report_for: TheFortext that is associated with the record
-  table_name: The name of the table that the record belongs to
-  column_name: The name of the column that the record belongs to
-  row_name: The name of the row that the record belongs to
-  units: The units of the record
-  value: The value of the record in string format by default.
For convenience, input character arguments matching in
$tabular_data() are case-insensitive.
Returns
A data.table::data.table() with 9 columns (when wide is
FALSE) or a named list of data.table::data.table()s where the
names are the combination of report_name, report_for and
table_name.
Examples
\dontrun{
# read all tabular data
sql$tabular_data()
# explicitly specify data you want
str(sql$tabular_data(
    report_name = "AnnualBuildingUtilityPerformanceSummary",
    table_name = "Site and Source Energy",
    column_name = "Total Energy",
    row_name = "Total Site Energy"
))
# get tabular data in wide format and coerce numeric values
str(sql$tabular_data(
    report_name = "AnnualBuildingUtilityPerformanceSummary",
    table_name = "Site and Source Energy",
    column_name = "Total Energy",
    row_name = "Total Site Energy",
    wide = TRUE, string_value = FALSE
))
}
Method print()
Print EplusSql object
Usage
EplusSql$print()
Details
$print() shows the core information of this EplusSql object,
including the path of the EnergyPlus SQLite file, last modified
time of the SQLite file and the path of the IDF file with the
same name in the same folder.
Returns
The EplusSql object itself, invisibly.
Examples
\dontrun{
sql$print()
}
Author(s)
Hongyuan Jia
Examples
## ------------------------------------------------
## Method `EplusSql$new`
## ------------------------------------------------
## Not run: 
if (is_avail_eplus("8.8")) {
    idf_name <- "1ZoneUncontrolled.idf"
    epw_name <-  "USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
    idf_path <- path_eplus_example("8.8", idf_name)
    epw_path <- path_eplus_weather("8.8", epw_name)
    # copy to tempdir and run the model
    idf <- read_idf(idf_path)
    idf$run(epw_path, tempdir(), echo = FALSE)
    # create from local file
    sql <- eplus_sql(file.path(tempdir(), "1ZoneUncontrolled.sql"))
}
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$path`
## ------------------------------------------------
## Not run: 
# get path
sql$path()
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$path_idf`
## ------------------------------------------------
## Not run: 
# get path
sql$path_idf()
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$list_table`
## ------------------------------------------------
## Not run: 
sql$list_table()
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$read_table`
## ------------------------------------------------
## Not run: 
# read a specific table
sql$read_table("Zones")
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$report_data_dict`
## ------------------------------------------------
## Not run: 
sql$report_data_dict()
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$report_data`
## ------------------------------------------------
## Not run: 
# read all report data
sql$report_data()
# specify output variables using report data dictionary
dict <- sql$report_data_dict()
sql$report_data(dict[units == "C"])
# specify output variables using 'key_value' and 'name'
sql$report_data("environment", "site outdoor air drybulb temperature")
# explicitly specify year value and time zone
sql$report_data(dict[1], year = 2020, tz = "Etc/GMT+8")
# explicitly specify case name
sql$report_data(dict[1], case = "example")
# get all possible columns
sql$report_data(dict[1], all = TRUE)
# return in a format that is similar as EnergyPlus CSV output
sql$report_data(dict[1], wide = TRUE)
# return in a format that is similar as EnergyPlus CSV output with
# extra columns
sql$report_data(dict[1], wide = TRUE, all = TRUE)
# only get data at the working hour on the first Monday
sql$report_data(dict[1], hour = 8:18, day_type = "monday", simulation_days = 1:7)
# only get specified run period data
sql$read_table("EnvironmentPeriods") # possible environment name
sql$report_data(dict[1], environment_name = "San Francisco Intl Ap CA USA TMY3 WMO#=724940")
# can also be done using 'environment_period_index' column
sql$report_data(dict[1], all = TRUE)[environment_period_index == 3L]
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$tabular_data`
## ------------------------------------------------
## Not run: 
# read all tabular data
sql$tabular_data()
# explicitly specify data you want
str(sql$tabular_data(
    report_name = "AnnualBuildingUtilityPerformanceSummary",
    table_name = "Site and Source Energy",
    column_name = "Total Energy",
    row_name = "Total Site Energy"
))
# get tabular data in wide format and coerce numeric values
str(sql$tabular_data(
    report_name = "AnnualBuildingUtilityPerformanceSummary",
    table_name = "Site and Source Energy",
    column_name = "Total Energy",
    row_name = "Total Site Energy",
    wide = TRUE, string_value = FALSE
))
## End(Not run)
## ------------------------------------------------
## Method `EplusSql$print`
## ------------------------------------------------
## Not run: 
sql$print()
## End(Not run)