epiblaster1geno {episcan} | R Documentation |
Parallelized calculation of the difference of correlation coefficients and compute Z
test with one genotype input
Description
Calculate the difference of correlation coefficents between cases and controls,
conduct Z
test for the differences (values) and choose variant pairs with the significance below the given threshold for output.
Usage
epiblaster1geno(geno, pheno, chunk = 1000, zpthres = 1e-05,
outfile = "NONE", suffix = ".txt", ...)
Arguments
geno |
is the normalized genotype data. It can be a matrix or a dataframe, or a big.matrix object (from bigmemory. The columns contain the information of variables and the rows contain the information of samples. |
pheno |
a vector containing the binary phenotype information (case/control). The values are either 0 (control) or 1 (case). |
chunk |
is the number of variants in each chunk. Default: 1000. |
zpthres |
is the significance threshold to select variant pairs for output. Default is 1e-6. |
outfile |
is the base of out filename. Default: 'NONE'. |
suffix |
is the suffix of out filename. Default: '.txt'. |
... |
not used. |
Value
null
Examples
# simulate some data
set.seed(123)
geno1 <- matrix(sample(0:2, size = 1000, replace = TRUE, prob = c(0.5, 0.3, 0.2)), ncol = 10)
dimnames(geno1) <- list(row = paste0("IND", 1:nrow(geno1)), col = paste0("rs", 1:ncol(geno1)))
p1 <- c(rep(0, 60), rep(1, 40))
# normalized data
geno1 <- scale(geno1)
# one genotype with case-control phenotype
epiblaster1geno(geno = geno1,
pheno = p1,
outfile = "episcan_1geno_cc",
suffix = ".txt",
zpthres = 0.9,
chunk = 10)
# take a look at the result
res <- read.table("episcan_1geno_cc.txt",
header = TRUE,
stringsAsFactors = FALSE)
head(res)