print.epinet {epinet} | R Documentation |
Print basic information about an epinet object
Description
Prints some general information about an object created by the
epinet
inference routine.
Usage
## S3 method for class 'epinet'
print(x, ...)
Arguments
x |
an object of class epinet, produced from the |
... |
other arguments to be passed to the print routine. |
Details
Prints some basic information about an epinet inference object, including the call, network parameters in the model, and number of iterations of the MCMC algorithm.
Value
Strictly invoked for side effect.
Author(s)
Chris Groendyke cgroendyke@gmail.com, David Welch david.welch@auckland.ac.nz
References
Groendyke, C. and Welch, D. 2018. epinet: An R Package to Analyze Epidemics Spread across Contact Networks, Journal of Statistical Software, 83-11.
See Also
epinet
for generating posterior samples of the parameters, and
plot.epinet
for plotting the posterior samples of the transmission tree.
Examples
# Simulate an epidemic through a network of 30
set.seed(3)
N <- 30
# Build dyadic covariate matrix (X)
# Have a single covariate for overall edge density; this is the Erdos-Renyi model
nodecov <- matrix(1:N, nrow = N)
dcm <- BuildX(nodecov)
# Simulate network and then simulate epidemic over network
examplenet <- SimulateDyadicLinearERGM(N, dyadiccovmat = dcm, eta = -1.8)
exampleepidemic <- SEIR.simulator(examplenet, N = 30,
beta = 0.3, ki = 2, thetai = 5, latencydist = "gamma")
# Set inputs for MCMC algorithm
mcmcinput <- MCMCcontrol(nsamp = 5000, thinning = 10, etapropsd = 0.2)
priorcontrol <- priorcontrol(bprior = c(0, 1), tiprior = c(1, 3), teprior = c(1, 3),
etaprior = c(0, 10), kiprior = c(2, 8), keprior = c(2, 8), priordists = "uniform")
# Run MCMC algorithm on this epidemic
# Note: Not enough data or iterations for any real inference
examplemcmc <- epinet( ~ 1, exampleepidemic, dcm, mcmcinput, priorcontrol)
print(examplemcmc)
## Not run:
# Note: This may take a few minutes to run.
set.seed(1)
N <- 50
mycov <- data.frame(id = 1:N, xpos = runif(N), ypos = runif(N))
dyadCov <- BuildX(mycov, binaryCol = list(c(2, 3)),binaryFunc = c("euclidean"))
# Build network
eta <- c(0,-7)
net <- SimulateDyadicLinearERGM(N = N, dyadiccovmat = dyadCov, eta = eta)
# Simulate epidemic
epi <- SEIR.simulator(M = net, N = N, beta = 1, ki = 3, thetai = 7, ke = 3, latencydist = "gamma")
# Run MCMC routine on simulated epidemic
mcmcinput <- MCMCcontrol(nsamp = 1000000, thinning = 100, etapropsd = c(1, 1))
priors <- priorcontrol(bprior = c(0, 4), tiprior = c(1, 15), teprior = c(1, 15),
etaprior = c(0, 10, 0, 10), kiprior = c(1, 7), keprior = c(1, 7), priordists = "uniform")
out <- epinet(~ xpos.ypos.L2Dist, epidata = epi, dyadiccovmat = dyadCov,
mcmcinput = mcmcinput, priors = priors)
print(out)
## End(Not run)