| egf_prior {epigrowthfit} | R Documentation | 
Prior Distributions
Description
Functions used by egf to specify prior distributions
of bottom level mixed effects model parameters.
Usage
Normal(mu = 0, sigma = 1)
LKJ(eta = 1)
Wishart(df, scale, tol = 1e-06)
InverseWishart(df, scale, tol = 1e-06)
Arguments
| mu | a numeric vector listing means. | 
| sigma | a positive numeric vector listing standard deviations. | 
| eta | a positive numeric vector listing values for the shape parameter, with 1 corresponding to a uniform distribution over the space of real, symmetric, positive definite matrices with unit diagonal elements. Lesser (greater) values concentrate the probability density around such matrices whose determinant is nearer to 0 (1). | 
| df | a numeric vector listing degrees of freedom.   | 
| scale | a list of real, symmetric, positive definite matrices or a matrix to be placed in a list of length 1. | 
| tol | a non-negative number specifying a tolerance for indefiniteness
of  | 
Value
A list inheriting from class egf_prior, with elements:
| family | a character string specifying a family of distributions. | 
| parameters | a named list of numeric vectors specifying parameter values. | 
Examples
Normal(mu = 0, sigma = 1)
Normal(mu = -5:5, sigma = c(0.1, 1))
LKJ(eta = 2)
u <- matrix(rnorm(9L), 3L, 3L)
utu <- crossprod(u)
uut <- tcrossprod(u)
Wishart(df = 6, scale = utu)
InverseWishart(df = 6, scale = list(utu, uut))