plot_importance {enmpa} | R Documentation |
Plot variable importance
Description
Visualization of the results obtained with the function
var_importance
.
Usage
plot_importance(x, xlab = NULL, ylab = "Relative contribution",
main = "Variable importance", extra_info = TRUE, ...)
Arguments
x |
data.frame output from |
xlab |
(character) a label for the x axis. |
ylab |
(character) a label for the y axis. |
main |
(character) main title for the plot. |
extra_info |
(logical) when results are from more than one model, it adds information about the number of models using each predictor and the mean contribution found. |
... |
Value
A plot
Examples
# Load species occurrences and environmental data.
data("enm_data", package = "enmpa")
# Custom formulas
forms <- c("Sp ~ bio_1 + I(bio_1^2) + I(bio_12^2)",
"Sp ~ bio_12 + I(bio_1^2) + I(bio_12^2)")
# Fitting models
fits <- fit_glms(forms, data = enm_data)
# Variable importance for single models
vi_1 <- var_importance(fits$ModelID_1)
plot_importance(x = vi_1)
vi_2 <- var_importance(fits$ModelID_2)
plot_importance(x = vi_2)
# Variable importance for multiple models
vi_c <- var_importance(fits)
plot_importance(x = vi_c)
[Package enmpa version 0.1.8 Index]