predictMaxEnt {enmSdmX} | R Documentation |
Predict a MaxEnt model object (with optional feature-level permutation)
Description
Takes a MaxEnt lambda
object or a MaxEnt object and returns raw or logistic predictions. Its output is the same as the predict
function from the terra package, and in fact, is slower than the function from terra. However, this function does allow custom manipulations that those functions do not allow (e.g., permuting product features while leaving other features with the same variables intact). This function does not clamp predictions–beyond the range of the training data, it extends the prediction in the direction it was going (up/down/no change). The function is based on Peter D. Wilson's document "Guidelines for computing MaxEnt model output values from a lambdas file". The function has a special feature in that it allows you to permute single variables or combinations of variables in specific features before making predictions. This is potentially useful, for example, if you wanted to determine the relative importance of a quadratic feature for a particular variable in a Maxent model relative to the other features in the model. You can also permute values of a variable regardless of which features they appear in. For product features, you can implement the permutation before or after the values are multiplied together (before often makes for bigger differences in predictions).
Usage
predictMaxEnt(
x,
data,
type = "cloglog",
perm = NULL,
permLinear = NULL,
permQuad = NULL,
permHinge = NULL,
permThresh = NULL,
permProd = NULL,
permProdRule = NULL,
...
)
Arguments
x |
Either a Maxent lambda object or a Maxent model object |
data |
Data frame. Data to which to make predictions |
type |
Character. One of:
|
perm |
Character vector. Name(s) of variable to permute before calculating predictions. This permutes the variables for all features in which they occur. If a variable is named here, it overrides permutation settings for each feature featType. Note that for product features the variable is permuted before the product is taken. This permutation is performed before any subsequent permutations (i.e., so if both variables in a product feature are included in |
permLinear |
Character list. Names(s) of variables to permute in linear features before calculating predictions. Ignored if |
permQuad |
Names(s) of variables to permute in quadratic features before calculating predictions. Ignored if |
permHinge |
Character vector. Names(s) of variables to permute in forward/reverse hinge features before calculating predictions. Ignored if |
permThresh |
Character list. Names(s) of variables to permute in threshold features before calculating predictions. Ignored if |
permProd |
Character list. A list object of |
permProdRule |
Character. Rule for how permutation of product features is applied: |
... |
Extra arguments (not used). |
Value
Numeric.
See Also
Examples
# NB: The examples below show a very basic modeling workflow. They have been
# designed to work fast, not produce accurate, defensible models. They can
# take a few minutes to run.
library(mgcv)
library(sf)
library(terra)
set.seed(123)
### setup data
##############
# environmental rasters
rastFile <- system.file('extdata/madClim.tif', package='enmSdmX')
madClim <- rast(rastFile)
# coordinate reference system
wgs84 <- getCRS('WGS84')
# lemur occurrence data
data(lemurs)
occs <- lemurs[lemurs$species == 'Eulemur fulvus', ]
occs <- vect(occs, geom=c('longitude', 'latitude'), crs=wgs84)
occs <- elimCellDuplicates(occs, madClim)
occEnv <- extract(madClim, occs, ID = FALSE)
occEnv <- occEnv[complete.cases(occEnv), ]
# create 10000 background sites (or as many as raster can support)
bgEnv <- terra::spatSample(madClim, 20000)
bgEnv <- bgEnv[complete.cases(bgEnv), ]
bgEnv <- bgEnv[1:min(10000, nrow(bgEnv)), ]
# collate occurrences and background sites
presBg <- data.frame(
presBg = c(
rep(1, nrow(occEnv)),
rep(0, nrow(bgEnv))
)
)
env <- rbind(occEnv, bgEnv)
env <- cbind(presBg, env)
predictors <- c('bio1', 'bio12')
### calibrate models
####################
# Note that all of the trainXYZ functions can made to go faster using the
# "cores" argument (set to just 1, by default). The examples below will not
# go too much faster using more cores because they are simplified, but
# you can try!
cores <- 1
# MaxEnt
mx <- trainMaxEnt(
data = env,
resp = 'presBg',
preds = predictors,
regMult = 1, # too few values for reliable model, but fast
verbose = TRUE,
cores = cores
)
# MaxNet
mn <- trainMaxNet(
data = env,
resp = 'presBg',
preds = predictors,
regMult = 1, # too few values for reliable model, but fast
verbose = TRUE,
cores = cores
)
# generalized linear model (GLM)
gl <- trainGLM(
data = env,
resp = 'presBg',
preds = predictors,
scale = TRUE, # automatic scaling of predictors
verbose = TRUE,
cores = cores
)
# generalized additive model (GAM)
ga <- trainGAM(
data = env,
resp = 'presBg',
preds = predictors,
verbose = TRUE,
cores = cores
)
# natural splines
ns <- trainNS(
data = env,
resp = 'presBg',
preds = predictors,
scale = TRUE, # automatic scaling of predictors
df = 1:2, # too few values for reliable model(?)
verbose = TRUE,
cores = cores
)
# boosted regression trees
envSub <- env[1:1049, ] # subsetting data to run faster
brt <- trainBRT(
data = envSub,
resp = 'presBg',
preds = predictors,
learningRate = 0.001, # too few values for reliable model(?)
treeComplexity = c(2, 3), # too few values for reliable model, but fast
minTrees = 1200, # minimum trees for reliable model(?), but fast
maxTrees = 1200, # too small for reliable model(?), but fast
tryBy = 'treeComplexity',
anyway = TRUE, # return models that did not converge
verbose = TRUE,
cores = cores
)
# random forests
rf <- trainRF(
data = env,
resp = 'presBg',
preds = predictors,
numTrees = c(100, 500), # using at least 500 recommended, but fast!
verbose = TRUE,
cores = cores
)
### make maps of models
#######################
# NB We do not have to scale rasters before predicting GLMs and NSs because we
# used the `scale = TRUE` argument in trainGLM() and trainNS().
mxMap <- predictEnmSdm(mx, madClim)
mnMap <- predictEnmSdm(mn, madClim)
glMap <- predictEnmSdm(gl, madClim)
gaMap <- predictEnmSdm(ga, madClim)
nsMap <- predictEnmSdm(ns, madClim)
brtMap <- predictEnmSdm(brt, madClim)
rfMap <- predictEnmSdm(rf, madClim)
maps <- c(
mxMap,
mnMap,
glMap,
gaMap,
nsMap,
brtMap,
rfMap
)
names(maps) <- c('MaxEnt', 'MaxNet', 'GLM', 'GAM', 'NSs', 'BRTs', 'RFs')
fun <- function() plot(occs, col='black', pch=3, add=TRUE)
plot(maps, fun = fun, nc = 4)
### compare model responses to BIO12 (mean annual precipitation)
################################################################
# make a data frame holding all other variables at mean across occurrences,
# varying only BIO12
occEnvMeans <- colMeans(occEnv, na.rm=TRUE)
occEnvMeans <- rbind(occEnvMeans)
occEnvMeans <- as.data.frame(occEnvMeans)
climFrame <- occEnvMeans[rep(1, 100), ]
rownames(climFrame) <- NULL
minBio12 <- min(env$bio12)
maxBio12 <- max(env$bio12)
climFrame$bio12 <- seq(minBio12, maxBio12, length.out=100)
predMx <- predictEnmSdm(mx, climFrame)
predMn <- predictEnmSdm(mn, climFrame)
predGl <- predictEnmSdm(gl, climFrame)
predGa <- predictEnmSdm(ga, climFrame)
predNat <- predictEnmSdm(ns, climFrame)
predBrt <- predictEnmSdm(brt, climFrame)
predRf <- predictEnmSdm(rf, climFrame)
plot(climFrame$bio12, predMx,
xlab='BIO12', ylab='Prediction', type='l', ylim=c(0, 1))
lines(climFrame$bio12, predMn, lty='solid', col='red')
lines(climFrame$bio12, predGl, lty='dotted', col='blue')
lines(climFrame$bio12, predGa, lty='dashed', col='green')
lines(climFrame$bio12, predNat, lty=4, col='purple')
lines(climFrame$bio12, predBrt, lty=5, col='orange')
lines(climFrame$bio12, predRf, lty=6, col='cyan')
legend(
'topleft',
inset = 0.01,
legend = c(
'MaxEnt',
'MaxNet',
'GLM',
'GAM',
'NS',
'BRT',
'RF'
),
lty = c(1, 1:6),
col = c(
'black',
'red',
'blue',
'green',
'purple',
'orange',
'cyan'
),
bg = 'white'
)