weights.enetLTS {enetLTS} | R Documentation |
binary weights from the "enetLTS"
object
Description
Extract binary weights that indicate outliers from the current model.
Usage
## S3 method for class 'enetLTS'
weights(object,vers=c("reweighted","raw","both"),index=FALSE,...)
Arguments
object |
the model fit from which to extract outlier weights. |
vers |
a character string specifying for which estimator to extract
outlier weights. Possible values are |
index |
a logical indicating whether the indices of the weight vector should
be included or not (the default is |
... |
additional arguments from the |
Value
A numeric vector containing the requested outlier weights.
Note
The weights are 1
for observations with reasonably small
residuals and 0
for observations with large residuals.
Here, residuals represent standardized residuals
for family="gaussian"
, Pearson residuals for
family="binomial"
and group-wise scaled robust distances
family="multinomial"
.
Use weights with or without index is available.
Author(s)
Fatma Sevinc KURNAZ, Irene HOFFMANN, Peter FILZMOSER
Maintainer: Fatma Sevinc KURNAZ <fatmasevinckurnaz@gmail.com>;<fskurnaz@yildiz.edu.tr>
See Also
Examples
## for gaussian
set.seed(86)
n <- 100; p <- 25 # number of observations and variables
beta <- rep(0,p); beta[1:6] <- 1 # 10% nonzero coefficients
sigma <- 0.5 # controls signal-to-noise ratio
x <- matrix(rnorm(n*p, sigma),nrow=n)
e <- rnorm(n,0,1) # error terms
eps <- 0.1 # contamination level
m <- ceiling(eps*n) # observations to be contaminated
eout <- e; eout[1:m] <- eout[1:m] + 10 # vertical outliers
yout <- c(x %*% beta + sigma * eout) # response
xout <- x; xout[1:m,] <- xout[1:m,] + 10 # bad leverage points
fit1 <- enetLTS(xout,yout)
weights(fit1)
weights(fit1,vers="raw",index=TRUE)
weights(fit1,vers="both",index=TRUE)
## for binomial
eps <-0.05 # %10 contamination to only class 0
m <- ceiling(eps*n)
y <- sample(0:1,n,replace=TRUE)
xout <- x
xout[y==0,][1:m,] <- xout[1:m,] + 10; # class 0
yout <- y # wrong classification for vertical outliers
fit2 <- enetLTS(xout,yout,family="binomial")
weights(fit2)
weights(fit2,vers="raw",index=TRUE)
weights(fit2,vers="both",index=TRUE)
## for multinomial
n <- 120; p <- 15
NC <- 3
X <- matrix(rnorm(n * p), n, p)
betas <- matrix(1:NC, ncol=NC, nrow=p, byrow=TRUE)
betas[(p-5):p,]=0; betas <- rbind(rep(0,NC),betas)
lv <- cbind(1,X) %*% betas
probs <- exp(lv)/apply(exp(lv),1,sum)
y <- apply(probs,1,function(prob){sample(1:NC, 1, TRUE, prob)})
xout <- X
eps <-0.05 # %10 contamination to only class 0
m <- ceiling(eps*n)
xout[1:m,] <- xout[1:m,] + 10 # bad leverage points
yout <- y
fit3 <- enetLTS(xout,yout,family="multinomial")
weights(fit3)
weights(fit3,vers="raw",index=TRUE)
weights(fit3,vers="both",index=TRUE)