| plotDiagnostic.enetLTS {enetLTS} | R Documentation | 
diagnostics plots from the "enetLTS" object
Description
Produce plots for the diagnostics of the current model.
Usage
plotDiagnostic.enetLTS(object,vers=c("reweighted","raw"),...)
Arguments
object | 
 the model fit to be plotted.  | 
vers | 
 a character string denoting which model to use for the plots.
Possible values are   | 
... | 
 additional arguments from the   | 
Value
An object of class "ggplot" (see ggplot).
Note
gives the plot of
- First two components of estimated scores for multinomial logistic regression (for family="multinomial")
- y vs fitted values/link function. (for for both family="binomial" and family="gaussian").
Author(s)
Fatma Sevinc KURNAZ, Irene HOFFMANN, Peter FILZMOSER
 Maintainer: Fatma Sevinc KURNAZ <fatmasevinckurnaz@gmail.com>; <fskurnaz@yildiz.edu.tr>
References
Kurnaz, F.S., Hoffmann, I. and Filzmoser, P. (2017) Robust and sparse estimation methods for high dimensional linear and logistic regression. Chemometrics and Intelligent Laboratory Systems.
See Also
ggplot,
enetLTS,
coef.enetLTS,
predict.enetLTS,
residuals.enetLTS,
fitted.enetLTS
Examples
## for gaussian
set.seed(86)
n <- 100; p <- 25                             # number of observations and variables
beta <- rep(0,p); beta[1:6] <- 1              # 10% nonzero coefficients
sigma <- 0.5                                  # controls signal-to-noise ratio
x <- matrix(rnorm(n*p, sigma),nrow=n)
e <- rnorm(n,0,1)                             # error terms
eps <- 0.1                                    # contamination level
m <- ceiling(eps*n)                           # observations to be contaminated
eout <- e; eout[1:m] <- eout[1:m] + 10        # vertical outliers
yout <- c(x %*% beta + sigma * eout)        # response
xout <- x; xout[1:m,] <- xout[1:m,] + 10      # bad leverage points
fit1 <- enetLTS(xout,yout,crit.plot=FALSE)
plotDiagnostic.enetLTS(fit1)
plotDiagnostic.enetLTS(fit1,vers="raw")
## for binomial
eps <-0.05                                     # %10 contamination to only class 0
m <- ceiling(eps*n)
y <- sample(0:1,n,replace=TRUE)
xout <- x
xout[y==0,][1:m,] <- xout[1:m,] + 10;          # class 0
yout <- y                                      # wrong classification for vertical outliers
fit2 <- enetLTS(xout,yout,family="binomial",crit.plot=FALSE)
plotDiagnostic.enetLTS(fit2)
plotDiagnostic.enetLTS(fit2,vers="raw")
## for multinomial
n <- 120; p <- 15
NC <- 3
X <- matrix(rnorm(n * p), n, p)
betas <- matrix(1:NC, ncol=NC, nrow=p, byrow=TRUE)
betas[(p-5):p,]=0; betas <- rbind(rep(0,NC),betas)
lv <- cbind(1,X) %*% betas
probs <- exp(lv)/apply(exp(lv),1,sum)
y <- apply(probs,1,function(prob){sample(1:NC, 1, TRUE, prob)})
xout <- X
eps <-0.05                          # %10 contamination to only class 0
m <- ceiling(eps*n)
xout[1:m,] <- xout[1:m,] + 10       # bad leverage points
yout <- y
fit3 <- enetLTS(xout,yout,family="multinomial",crit.plot=FALSE)
plotDiagnostic.enetLTS(fit3)
plotDiagnostic.enetLTS(fit3,vers="raw")