| pdcor {energy} | R Documentation |
Partial distance correlation and covariance
Description
Partial distance correlation pdcor, pdcov, and tests.
Usage
pdcov.test(x, y, z, R)
pdcor.test(x, y, z, R)
pdcor(x, y, z)
pdcov(x, y, z)
Arguments
x |
data or dist object of first sample |
y |
data or dist object of second sample |
z |
data or dist object of third sample |
R |
replicates for permutation test |
Details
pdcor(x, y, z) and pdcov(x, y, z) compute the partial distance
correlation and partial distance covariance, respectively,
of x and y removing z.
A test for zero partial distance correlation (or zero partial distance covariance) is implemented in pdcor.test, and pdcov.test.
Argument types supported are numeric data matrix, data.frame, tibble, numeric vector, class "dist" object, or factor. For unordered factors a 0-1 distance matrix is computed.
Value
Each test returns an object of class htest.
Author(s)
Maria L. Rizzo mrizzo@bgsu.edu and Gabor J. Szekely
References
Szekely, G.J. and Rizzo, M.L. (2014), Partial Distance Correlation with Methods for Dissimilarities. Annals of Statistics, Vol. 42 No. 6, 2382-2412.
Examples
n = 30
R <- 199
## mutually independent standard normal vectors
x <- rnorm(n)
y <- rnorm(n)
z <- rnorm(n)
pdcor(x, y, z)
pdcov(x, y, z)
set.seed(1)
pdcov.test(x, y, z, R=R)
set.seed(1)
pdcor.test(x, y, z, R=R)
if (require(MASS)) {
p = 4
mu <- rep(0, p)
Sigma <- diag(p)
## linear dependence
y <- mvrnorm(n, mu, Sigma) + x
print(pdcov.test(x, y, z, R=R))
## non-linear dependence
y <- mvrnorm(n, mu, Sigma) * x
print(pdcov.test(x, y, z, R=R))
}