dbetabinom {emdbook} | R Documentation |
Beta-binomial distribution
Description
Density function and random variate generator for the beta-binomial function, parameterized in terms of probability and overdispersion
Usage
dbetabinom(x, prob, size, theta, shape1, shape2, log = FALSE)
rbetabinom(n, prob, size, theta, shape1, shape2)
Arguments
x |
a numeric vector of integer values |
prob |
numeric vector: mean probability of underlying beta distribution |
size |
integer: number of samples |
theta |
overdispersion parameter |
shape1 |
shape parameter of per-trial probability distribution |
shape2 |
shape parameter of per-trial probability distribution |
log |
(logical) return log probability density? |
n |
integer number of random variates to return |
Details
The beta-binomial distribution is the result of compounding a beta distribution of probabilities with a binomial sampling process. The density function is
p(x) = \frac{C(N,x) \mbox{Beta}(x+\theta p,N-x+\theta(1-p))}%
{\mbox{Beta}(\theta p,\theta(1-p))}%
The parameters shape1
and shape2
are
the more traditional parameterization in terms of
the parameters of the per-trial probability distribution.
Value
A vector of probability densities or random deviates.
If x
is non-integer, the result is zero (and
a warning is given).
Note
Although the quantile (qbetabinom)
and cumulative distribution (pbetabinom)
functions are not available, in a pinch they
could be computed from the pghyper
and
qghyper
functions in the SuppDists
package – provided that shape2>1
. As
described in ?pghyper
, pghyper(q,a=-shape1,
N=-shape1-shape2,k=size)
should give the
cumulative distribution for the beta-binomial
distribution with parameters (shape1,shape2,size),
and similarly for qghyper
.
(Translation to the (theta,size,prob) parameterization
is left as an exercise.)
Author(s)
Ben Bolker
References
Morris (1997), American Naturalist 150:299-327; https://en.wikipedia.org/wiki/Beta-binomial_distribution
See Also
Examples
set.seed(100)
n <- 9
z <- rbetabinom(1000, 0.5, size=n, theta=4)
par(las=1,bty="l")
plot(table(z)/length(z),ylim=c(0,0.34),col="gray",lwd=4,
ylab="probability")
points(0:n,dbinom(0:n,size=n,prob=0.5),col=2,pch=16,type="b")
points(0:n,dbetabinom(0:n,size=n,theta=4,
prob=0.5),col=4,pch=17,type="b")
## correspondence with SuppDists
if (require(SuppDists)) {
d1a <- dghyper(0:5,a=-5,N=-10,k=5)
d1b <- dbetabinom(0:5,shape1=5,shape2=5,size=5)
max(abs(d1a-d1b))
p1a <- pghyper(0:5,a=-5,N=-10,k=5,lower.tail=TRUE)
p1b <- cumsum(d1b)
max(abs(p1a-p1b))
}