stages {embryogrowth} | R Documentation |
Database of of embryonic development and thermosensitive period of development for sex determination
Description
Database of embryonic development and thermosensitive period of development for sex determination.
Usage
stages
Format
A list with dataframes including attributes
Details
Database of embryonic development and thermosensitive period of development for sex determination
Author(s)
Marc Girondot marc.girondot@universite-paris-saclay.fr
References
Pieau, C., Dorizzi, M., 1981. Determination of temperature sensitive stages for sexual differentiation of the gonads in embryos of the turtle, Emys orbicularis. Journal of Morphology 170, 373-382.
Yntema, C.L., Mrosovsky, N., 1982. Critical periods and pivotal temperatures for sexual differentiation in loggerhead sea turtles. Canadian Journal of Zoology-Revue Canadienne de Zoologie 60, 1012-1016.
Kaska, Y., Downie, R., 1999. Embryological development of sea turtles (Chelonia mydas, Caretta caretta) in the Mediterranean. Zoology in the Middle East 19, 55-69.
Greenbaum, E., 2002. A standardized series of embryonic stages for the emydid turtle Trachemys scripta. Canadian Journal of Zoology-Revue Canadienne de Zoologie 80, 1350-1370.
Magalhães, M.S., Vogt, R.C., Sebben, A., Dias, L.C., de Oliveira, M.F., de Moura, C.E.B., 2017. Embryonic development of the Giant South American River Turtle, Podocnemis expansa (Testudines: Podocnemididae). Zoomorphology.
See Also
Other Functions for temperature-dependent sex determination:
DatabaseTSD.version()
,
DatabaseTSD
,
P_TRT()
,
TSP.list
,
plot.tsd()
,
predict.tsd()
,
tsd_MHmcmc_p()
,
tsd_MHmcmc()
,
tsd()
Examples
## Not run:
library(embryogrowth)
data(stages)
names(stages)
levels(as.factor(stages$Species))
# Version of database
stages$Version[1]
kaska99.SCL <- subset(stages, subset=(Species == "Caretta caretta"),
select=c("Stage", "SCL_Mean_mm", "SCL_SD_mm", "Days_Begin", "Days_End"))
kaska99.SCL[kaska99.SCL$Stage==31, "Days_Begin"] <- 51
kaska99.SCL[kaska99.SCL$Stage==31, "Days_End"] <- 62
kaska99.SCL <- na.omit(kaska99.SCL)
kaska99.SCL[which(kaska99.SCL$Stage==31), "Stage"] <- c("31a", "31b", "31c")
kaska99.SCL <- cbind(kaska99.SCL,
Days_Mean=(kaska99.SCL[, "Days_Begin"]+kaska99.SCL[, "Days_End"])/2)
kaska99.SCL <- cbind(kaska99.SCL,
Days_SD=(kaska99.SCL[, "Days_End"]-kaska99.SCL[, "Days_Begin"])/4)
Gompertz <- function(x, par) {
K <- par["K"]
rT <- par["rT"]
X0 <- par["X0"]
y <- abs(K)*exp(log(abs(X0)/abs(K))*exp(-rT*x))
return(y)
}
ML.Gompertz <- function(x, par) {
par <- abs(par)
y <- Gompertz(x, par)
return(sum(-dnorm(y, mean=kaska99.SCL[, "SCL_Mean_mm"],
sd=kaska99.SCL[, "SCL_SD_mm"], log=TRUE)))
}
parIni <- structure(c(48.66977358, 0.06178453, 0.38640902),
.Names = c("K", "rT", "X0"))
fitsize.SCL <- optim(parIni, ML.Gompertz, x=kaska99.SCL[, "Days_Mean"], hessian = TRUE)
# Estimation of standard error of parameters using Hessian matrix
sqrt(diag(solve(fitsize.SCL$hessian)))
# Estimation of standard error of parameters using Bayesian concept and MCMC
pMCMC <- structure(list(Density = c("dunif", "dunif", "dunif"),
Prior1 = c(0, 0, 0), Prior2 = c(90, 1, 2),
SDProp = c(1, 1, 1),
Min = c(0, 0, 0), Max = c(90, 1, 2),
Init = fitsize.SCL$par),
.Names = c("Density", "Prior1", "Prior2", "SDProp", "Min", "Max", "Init"),
row.names = c("K", "rT", "X0"), class = "data.frame")
Bayes.Gompertz <- function(data, x) {
x <- abs(x)
y <- Gompertz(data, x)
return(sum(-dnorm(y, mean=kaska99.SCL[, "SCL_Mean_mm"],
sd=kaska99.SCL[, "SCL_SD_mm"], log=TRUE)))
}
mcmc_run <- MHalgoGen(n.iter=50000, parameters=pMCMC, data=kaska99.SCL[, "Days_Mean"],
likelihood=Bayes.Gompertz, n.chains=1, n.adapt=100, thin=1, trace=1,
adaptive = TRUE)
plot(mcmc_run, xlim=c(0, 90), parameters="K")
plot(mcmc_run, xlim=c(0, 1), parameters="rT")
plot(mcmc_run, xlim=c(0, 2), parameters="X0")
1-rejectionRate(as.mcmc(mcmc_run))
par <- mcmc_run$resultMCMC[[1]]
outsp <- t(apply(par, MARGIN = 1, FUN=function(x) Gompertz(0:70, par=x)))
rangqtiles <- apply(outsp, MARGIN=2, function(x) {quantile(x, probs=c(0.025, 0.5, 0.975))})
par(mar=c(4, 4, 2, 1))
plot_errbar(x=kaska99.SCL[, "Days_Mean"], y=kaska99.SCL[, "SCL_Mean_mm"],
errbar.y = 2*kaska99.SCL[, "SCL_SD_mm"], bty="n", las=1,
ylim=c(0, 50), xlab="Days", ylab="SCL mm",
xlim=c(0, 70), x.plus = kaska99.SCL[, "Days_End"],
x.minus = kaska99.SCL[, "Days_Begin"])
lines(0:70, rangqtiles["2.5%", ], lty=2)
lines(0:70, rangqtiles["97.5%", ], lty=2)
lines(0:70, rangqtiles["50%", ], lty=3)
text(x=50, y=10, pos=4, labels=paste("K=", format(x = fitsize.SCL$par["K"], digits = 4)))
text(x=50, y=12.5, pos=4,
labels=paste("rK=", format(x = fitsize.SCL$par["K"]/39.33, digits = 4)))
text(x=50, y=15, pos=4, labels=paste("X0=", format(x = fitsize.SCL$par["X0"], digits = 4)))
title("Univariate normal distribution")
# Using a multivariate normal distribution
library(mvtnorm)
ML.Gompertz.2D <- function(x, par) {
par <- abs(par)
y <- Gompertz(x, par)
L <- 0
for (i in seq_along(y)) {
sigma <- matrix(c(kaska99.SCL$SCL_SD_mm[i]^2, 0, 0, kaska99.SCL$Days_SD[i]^2),
nrow=2, byrow=TRUE,
dimnames=list(c("SCL_SD_mm", "Days_SD"), c("SCL_SD_mm", "Days_SD")))
L <- L -dmvnorm(x=c(SCL_SD_mm=kaska99.SCL$SCL_Mean_mm[i],
Days_SD=kaska99.SCL$Days_Mean[i]),
mean= c(SCL_SD_mm=y[i], Days_SD=kaska99.SCL$Days_Mean[i]),
sigma=sigma, log=TRUE)
}
return(L)
}
parIni <- structure(c(48.66977358, 0.06178453, 0.38640902),
.Names = c("K", "rT", "X0"))
fitsize.SCL.2D <- optim(parIni, ML.Gompertz.2D, x=kaska99.SCL[, "Days_Mean"], hessian = TRUE)
# Estimation of standard error of parameters using Hessian matrix
sqrt(diag(solve(fitsize.SCL.2D$hessian)))
# Estimation of standard error of parameters using Bayesian concept and MCMC
Bayes.Gompertz.2D <- function(data, x) {
x <- abs(x)
y <- Gompertz(data, x)
L <- 0
for (i in seq_along(y)) {
sigma <- matrix(c(kaska99.SCL$SCL_SD_mm[i]^2, 0, 0, kaska99.SCL$Days_SD[i]^2),
nrow=2, byrow=TRUE,
dimnames=list(c("SCL_SD_mm", "Days_SD"), c("SCL_SD_mm", "Days_SD")))
L <- L - dmvnorm(x=c(SCL_SD_mm=kaska99.SCL$SCL_Mean_mm[i],
Days_SD=kaska99.SCL$Days_Mean[i]),
mean= c(SCL_SD_mm=y[i], Days_SD=kaska99.SCL$Days_Mean[i]),
sigma=sigma, log=TRUE)
}
return(L)
}
pMCMC <- structure(list(Density = c("dunif", "dunif", "dunif"),
Prior1 = c(0, 0, 0), Prior2 = c(90, 1, 2),
SDProp = c(1, 1, 1),
Min = c(0, 0, 0), Max = c(90, 1, 2),
Init = fitsize.SCL.2D$par),
.Names = c("Density", "Prior1", "Prior2", "SDProp", "Min", "Max", "Init"),
row.names = c("K", "rT", "X0"), class = "data.frame")
mcmc_run.2D <- MHalgoGen(n.iter=50000, parameters=pMCMC, data=kaska99.SCL[, "Days_Mean"],
likelihood=Bayes.Gompertz.2D, n.chains=1, n.adapt=100, thin=1, trace=1,
adaptive = TRUE)
plot(mcmc_run.2D, xlim=c(0, 90), parameters="K")
plot(mcmc_run.2D, xlim=c(0, 1), parameters="rT")
plot(mcmc_run.2D, xlim=c(0, 2), parameters="X0")
1-rejectionRate(as.mcmc(mcmc_run.2D))
par <- mcmc_run.2D$resultMCMC[[1]]
outsp <- t(apply(par, MARGIN = 1, FUN=function(x) Gompertz(0:70, par=x)))
rangqtiles <- apply(outsp, MARGIN=2, function(x) {quantile(x, probs=c(0.025, 0.5, 0.975))})
par(mar=c(4, 4, 2, 1))
plot_errbar(x=kaska99.SCL[, "Days_Mean"], y=kaska99.SCL[, "SCL_Mean_mm"],
errbar.y = 2*kaska99.SCL[, "SCL_SD_mm"], bty="n", las=1,
ylim=c(0, 50), xlab="Days", ylab="SCL mm",
xlim=c(0, 70), x.plus = kaska99.SCL[, "Days_End"],
x.minus = kaska99.SCL[, "Days_Begin"])
lines(0:70, rangqtiles["2.5%", ], lty=2)
lines(0:70, rangqtiles["97.5%", ], lty=2)
lines(0:70, rangqtiles["50%", ], lty=3)
text(x=50, y=10, pos=4,
labels=paste("K=", format(x = fitsize.SCL.2D$par["K"], digits = 4)))
text(x=50, y=12.5, pos=4,
labels=paste("rK=", format(x = fitsize.SCL.2D$par["K"]/39.33, digits = 4)))
text(x=50, y=15, pos=4,
labels=paste("X0=", format(x = fitsize.SCL.2D$par["X0"], digits = 4)))
title("Multivariate normal distribution")
## End(Not run)