searchR {embryogrowth} | R Documentation |
Fit the parameters that best represent nest incubation data.
Description
Fit the parameters that best represent data.
hatchling.metric can be a data.frame with two columns Mean and SD and rownames with the nest name.
If SD is na, then least squarre criteria is used for fitting.
Function to fit thermal reaction norm can be expressed as :
a 4-parameters Schoolfield, Sharpe, and Magnuson model (1981) with
DHH
,DHA
,T12H
, andRho25
;a 6-parameters Schoolfield, Sharpe, and Magnuson model (1981) with
T12L
,DT
,DHH
,DHL
,DHA
, andRho25
;Each of these two first models can be combined as low and high sets of parameters by adding the
_L
suffix to one set. Then you must add alsotransition_S
andtransition_P
parameters and then the growth rate is 1/(1+exp((1/transition_S)*(P-transition_P))) with P being the proportion of development;The
Rho25_b
control the effect of hygrometry (orRho25_b_L
) (It is not fully functional still);a Weibull function with
k
(shape),lambda
(scale) andtheta
parameters;a normal function with
Peak
,Scale
, andsd
parameters;an asymmetric normal fuction with
Peak
,Scale
,sdH
andsdL
parameters;a symmetric trigonometric function with
Length
,Peak
, andMax
;an asymmetric trigonometric function with
LengthB
,LengthE
,Peak
, andMax
.Dallwitz-Higgins model (1992) can be used using
Dallwitz_b1
,Dallwitz_b2
,Dallwitz_b3
,Dallwitz_b4
andDallwitz_b5
parameters.If
Dallwitz_b4
is not included,Dallwitz_b4
= 6 will be used.If
Dallwitz_b5
is not included,Dallwitz_b5
= 0.4 will be used.It is possible also to add the parameter
epsilon
and then the model becomesX + epsilon
with X being any of the above model;It is possible also to add the parameter
epsilon_L
and then the model becomesX_L + epsilon_L
withX_L
being any of the above model with suffix_L
;If the name of the parameter is a number, then the model is a polynom anchored with the rate being the parameter value at this temperature (the name). see
ChangeSSM()
function.
Usage
searchR(
parameters = stop("Initial set of parameters must be provided"),
fixed.parameters = c(rK = 1.208968),
temperatures = stop("Formated temperature must be provided !"),
integral = integral.Gompertz,
derivate = NULL,
hatchling.metric = c(Mean = 39.33, SD = 1.92),
M0 = 0.3470893,
saveAtMaxiter = FALSE,
fileName = "intermediate",
weight = NULL,
control = list(trace = 1, REPORT = 100, maxit = 500)
)
Arguments
parameters |
A set of parameters used as initial point for searching |
fixed.parameters |
A set of parameters that will not be changed |
temperatures |
Timeseries of temperatures after formated using FormatNests() |
integral |
Function used to fit embryo growth: integral.Gompertz, integral.exponential or integral.linear |
derivate |
Function used to fit embryo growth: derivate.Gompertz, derivate.exponential or derivate.linear |
hatchling.metric |
A vector with Mean and SD of size of hatchlings, ex. hatchling.metric=c(Mean=39, SD=3). Can be a data.frame also. See description |
M0 |
Measure of hatchling size or mass proxi at laying date |
saveAtMaxiter |
If True, each time number of interation reach maxiter, current data are saved in file with filename name |
fileName |
The intermediate results are saved in file with fileName.Rdata name |
weight |
A named vector of the weight for each nest for likelihood estimation |
control |
List for control parameters for optimx |
Details
searchR fits the parameters that best represent nest incubation data.
Value
A result object
Author(s)
Marc Girondot marc.girondot@gmail.com
References
Angilletta, M.J., 2006. Estimating and comparing thermal performance curves. Journal of Thermal Biology 31, 541-545.
Dallwitz, M.J., Higgins, J.P., 1992. User’s guide to DEVAR. A computer program for estimating development rate as a function of temperature. CSIRO Aust Div Entomol Rep 2, 1-23.
Georges, A., Beggs, K., Young, J.E., Doody, J.S., 2005. Modelling development of reptile embryos under fluctuating temperature regimes. Physiological and Biochemical Zoology 78, 18-30.
Girondot, M., Kaska, Y., 2014. A model to predict the thermal reaction norm for the embryo growth rate from field data. Journal of Thermal Biology 45, 96-102.
Schoolfield, R.M., Sharpe, P.J., Magnuson, C.E., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology 88, 719-731.
Examples
## Not run:
library(embryogrowth)
data(nest)
formated <- FormatNests(nest)
# The initial parameters value can be:
# "T12H", "DHA", "DHH", "Rho25"
# Or
# "T12L", "DT", "DHA", "DHH", "DHL", "Rho25"
# K for Gompertz must be set as fixed parameter or being a constant K
# or relative to the hatchling size rK
############################################################################
# From Girondot M, Monsinjon J, Guillon J-M (2018) Delimitation of the
# embryonic thermosensitive period for sex determination using an embryo
# growth model reveals a potential bias for sex ratio prediction in turtles.
# Journal of Thermal Biology 73: 32-40
# rK = 1.208968
# M0 = 0.3470893
############################################################################
pfixed <- c(rK=1.208968)
M0 = 0.3470893
############################################################################
# 4 parameters SSM
############################################################################
x <- c('DHA' = 109.31113503282113, 'DHH' = 617.80695919563857,
'T12H' = 306.38890489505093, 'Rho25' = 229.37265815800225)
resultNest_4p_SSM <- searchR(parameters=x, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92))
data(resultNest_4p_SSM)
plot(resultNest_4p_SSM, xlim=c(0,70), ylimT=c(22, 32), ylimS=c(0,45), series=1,
embryo.stages="Caretta caretta.SCL")
############################################################################
# 6 parameters SSM
############################################################################
x <- structure(c(106.567809092008, 527.359011254683, 614.208632495199,
2720.94506457237, 306.268259715624, 120.336791245212), .Names = c("DHA",
"DHH", "DHL", "DT", "T12L", "Rho25"))
############################################################################
# example of data.frame for hatchling.metric
############################################################################
thatchling.metric <- data.frame(Mean=rep(39.33, formated$IndiceT["NbTS"]),
SD=rep(1.92, formated$IndiceT["NbTS"]),
row.names=names(formated)[1:formated$IndiceT["NbTS"]])
# It is sometimes difficult to find a good starting point for
# SSM 6 parameters model. This function helps to find it based on a previoulsy
# fitted model.
x <- ChangeSSM(temperatures = (200:350)/10,
parameters = resultNest_4p_SSM$par,
initial.parameters = structure(c(106.567809092008,
527.359011254683, 614.208632495199,
4.94506457237, 306.268259715624, 120.336791245212),
.Names = c("DHA", "DHH", "DHL", "DT", "T12L", "Rho25")),
control=list(maxit=1000))
resultNest_6p_SSM <- searchR(parameters=x$par, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz,
M0=M0,
hatchling.metric=thatchling.metric)
plotR(resultNest_6p_SSM, ylim=c(0, 1))
data(resultNest_6p_SSM)
pMCMC <- TRN_MHmcmc_p(resultNest_6p_SSM, accept=TRUE)
# Take care, it can be very long, sometimes several days
resultNest_mcmc_6p_SSM <- GRTRN_MHmcmc(result=resultNest_6p_SSM,
parametersMCMC=pMCMC,
n.iter=10000,
n.chains = 1,
n.adapt = 0,
thin=1,
trace=TRUE)
############################################################################
# compare_AIC() is a function from the package "HelpersMG"
compare_AIC(test1=resultNest_4p_SSM, test2=resultNest_6p_SSM)
############################################################################
############################################################################
############ Example as linear progression of development
############ The development progress goes from 0 to 1
############################################################################
pfixed <- NULL
M0 = 0
############################################################################
# 4 parameters SSM
############################################################################
x <- c('DHA' = 64.868697530424186, 'DHH' = 673.18292743646771,
'T12H' = 400.90952554047749, 'Rho25' = 82.217237723502123)
resultNest_4p_SSM_Linear <- searchR(parameters=x, fixed.parameters=pfixed,
temperatures=formated, integral=integral.linear, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92)/39.33)
plotR(resultNest_4p_SSM_Linear, ylim=c(0, 2), scaleY= 100000)
plot(resultNest_4p_SSM_Linear, xlim=c(0,70), ylimT=c(22, 32), ylimS=c(0,1.1),
series=1, embryo.stages="Generic.ProportionDevelopment")
tc <- GenerateConstInc(duration=300*24*60, temperatures = 28)
tc_f <- FormatNests(tc)
plot(resultNest_4p_SSM_Linear, xlim=c(0,70), ylimT=c(22, 32), ylimS=c(0,1.1),
series=1, embryo.stages="Generic.ProportionDevelopment", temperatures=tc_f)
############################################################################
############ with new parametrization based on anchor
############ This is a non-parametric version
############################################################################
data(resultNest_4p_SSM)
x0 <- resultNest_4p_SSM$par
t <- range(hist(resultNest_4p_SSM, plot=FALSE)$temperatures)
x <- getFromNamespace(".SSM", ns="embryogrowth")(T=seq(from=t[1],
to=t[2],
length.out=7),
parms=x0)[[1]]*1E5
names(x) <- as.character(seq(from=t[1],
to=t[2],
length.out=7))
M0 <- 0.3470893
pfixed <- c(rK=1.208968)
resultNest_newp <- searchR(parameters=x, fixed.parameters=pfixed,
temperatures=formated,
integral=integral.Gompertz, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92))
plotR(resultNest_newp, ylim=c(0, 2),
xlim=c(23, 34), ylimH=c(0, 3), show.hist=TRUE)
compare_AIC(test4p=resultNest_4p_SSM,
test6p=resultNest_6p_SSM,
testAnchor=resultNest_newp)
############################################
# example with thermal reaction norm fitted from Weibull function
############################################
x <- ChangeSSM(temperatures = (200:350)/10,
parameters = resultNest_4p_SSM$par,
initial.parameters = structure(c(73.4009010417375, 304.142079511996,
27.4671689276281),
.Names = c("k", "lambda", "scale")),
control=list(maxit=1000))
M0 <- 0.3470893
pfixed <- c(rK=1.208968)
resultNest_3p_Weibull <- searchR(parameters=x$par, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92))
plotR(resultNest_3p_Weibull, ylim=c(0,6), col="Black")
compare_AIC(SSM=resultNest_4p_SSM, Weibull=resultNest_3p_Weibull)
###########################################
# example with thermal reaction norm fitted from asymmetric normal function
############################################
x <- ChangeSSM(temperatures = (200:350)/10,
parameters = resultNest_4p_SSM$par,
initial.parameters = structure(c(3, 7, 11, 32),
.Names = c("Scale", "sdL", "sdH", "Peak")),
control=list(maxit=1000))
M0 <- 0.3470893
pfixed <- c(rK=1.208968)
resultNest_4p_normal <- searchR(parameters=x$par, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92))
###########################################
# example with thermal reaction norm fitted from trigonometric model
############################################
x <- ChangeSSM(temperatures = (200:350)/10,
parameters = resultNest_4p_SSM$par,
initial.parameters = structure(c(3, 20, 40, 32),
.Names = c("Max", "LengthB", "LengthE", "Peak")),
control=list(maxit=1000))
M0 <- 0.3470893
pfixed <- c(rK=1.208968)
resultNest_4p_trigo <- searchR(parameters=x$par, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92))
###############################################################
# example with thermal reaction norm fitted from Dallwitz model
###############################################################
# See: Dallwitz, M.J., Higgins, J.P., 1992. User’s guide to DEVAR. A computer
# program for estimating development rate as a function of temperature. CSIRO Aust
# Div Entomol Rep 2, 1-23.
# Note that Dallwitz model has many problems and I recommend to not use it:
# - The 3-parameters is too highly constraint
# - The 5 parameters produced infinite outputs for some sets of parameters that
# can be generated while using delta method.
x <- c('Dallwitz_b1' = 4.8854060791241816,
'Dallwitz_b2' = 20.398366565842029,
'Dallwitz_b3' = 31.510995256647092)
M0 <- 0.3470893
pfixed <- c(rK=1.208968)
resultNest_3p_Dallwitz <- searchR(parameters=x, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92))
plotR(resultNest_3p_Dallwitz, ylim=c(0,6))
x <- c('Dallwitz_b1' = 4.9104386262684656,
'Dallwitz_b2' = 7.515425231891359,
'Dallwitz_b3' = 31.221784599026638,
'Dallwitz_b4' = 7.0354467023505682,
'Dallwitz_b5' = -1.5955717975708577)
pfixed <- c(rK=1.208968)
resultNest_5p_Dallwitz <- searchR(parameters=x, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=0.3470893,
hatchling.metric=c(Mean=39.33, SD=1.92))
plotR(resultNest_5p_Dallwitz, ylim=c(0,3), scaleY=10000)
xp <- resultNest_6p_SSM$par
xp["Rho25"] <- 233
pfixed <- c(rK=1.208968)
resultNest_6p_SSM <- searchR(parameters=xp, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=0.3470893,
hatchling.metric=c(Mean=39.33, SD=1.92))
plotR(resultNest_6p_SSM, ylim=c(0,8))
xp <- ChangeSSM(parameters = resultNest_3p_Dallwitz$par,
initial.parameters = resultNest_4p_SSM$par)
pfixed <- c(rK=1.208968)
resultNest_4p_SSM <- searchR(parameters=xp$par, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=0.3470893,
hatchling.metric=c(Mean=39.33, SD=1.92))
plotR(resultNest_4p_SSM, ylim=c(0,6))
compare_AIC(Dallwitz3p=resultNest_3p_Dallwitz, Dallwitz5p=resultNest_5p_Dallwitz,
SSM=resultNest_4p_SSM, SSM=resultNest_6p_SSM)
###########################################
# Example with thermal reaction norm of proportion of development
# fitted from Dallwitz model
# see Woolgar, L., Trocini, S., Mitchell, N., 2013. Key parameters describing
# temperature-dependent sex determination in the southernmost population of loggerhead
# sea turtles. Journal of Experimental Marine Biology and Ecology 449, 77-84.
############################################
x <- structure(c(1.48207559695689, 20.1100310234046, 31.5665036287242),
.Names = c("Dallwitz_b1", "Dallwitz_b2", "Dallwitz_b3"))
resultNest_PropDev_3p_Dallwitz <- searchR(parameters=x, fixed.parameters=NULL,
temperatures=formated, integral=integral.linear, M0=0,
hatchling.metric=c(Mean=1, SD=NA))
plotR(resultNest_PropDev_3p_Dallwitz, ylim=c(0, 1.5), curve="ML")
plot(x=resultNest_PropDev_3p_Dallwitz, ylimS=c(0,1), xlim=c(0,60), series=2,
embryo.stages="Generic.ProportionDevelopment")
x <- structure(c(1.48904182113431, 10.4170365155993, 31.2591665490154,
6.32355497589913, -1.07425378667104), .Names = c("Dallwitz_b1",
"Dallwitz_b2", "Dallwitz_b3", "Dallwitz_b4", "Dallwitz_b5"))
resultNest_PropDev_5p_Dallwitz <- searchR(parameters=x, fixed.parameters=NULL,
temperatures=formated, integral=integral.linear, M0=0,
hatchling.metric=c(Mean=1, SD=NA))
plotR(resultNest_PropDev_5p_Dallwitz, ylim=c(0, 1.5))
plot(x=resultNest_PropDev_5p_Dallwitz, ylimS=c(0,1), xlim=c(0,60), series=2,
embryo.stages="Generic.ProportionDevelopment")
plotR(resultNest_PropDev_3p_Dallwitz, ylim=c(0, 1.5), curve="ML")
plotR(resultNest_PropDev_5p_Dallwitz, ylim=c(0, 1.5), curve="ML", new=FALSE, col="red")
compare_AICc(Dallwitz3p=resultNest_PropDev_3p_Dallwitz,
Dallwitz5p=resultNest_PropDev_5p_Dallwitz)
###########################################################################
# Dalwitz model with proportion of development and fitted SD for final size
###########################################################################
x <- c('Dallwitz_b1' = 1.4886497996404355,
'Dallwitz_b2' = 10.898310418085916,
'Dallwitz_b3' = 31.263224721068056,
'Dallwitz_b4' = 6.1624623077734535,
'Dallwitz_b5' = -1.0027132357973265,
'SD' = 0.041829475961912894)
resultNest_PropDev_5p_Dallwitz <- searchR(parameters=x, fixed.parameters=NULL,
temperatures=formated, integral=integral.linear, M0=0,
hatchling.metric=c(Mean=1))
plotR(resultNest_PropDev_5p_Dallwitz, ylim=c(0, 1.5), curve="ML")
# Note that the standard error of the curve cannot be estimated with delta method.
# MCMC should be used
plot(x=resultNest_PropDev_5p_Dallwitz, ylimS=c(0,1), xlim=c(0,60), series=2,
embryo.stages="Generic.ProportionDevelopment")
##############################################################################
# Parameters Threshold_Low and Threshold_High are used to truncate growth rate
##############################################################################
plotR(result=resultNest_PropDev_5p_Dallwitz,
fixed.parameters=c(Threshold_Low=26,
Threshold_High=33),
ylim=c(0, 1.5), curve="ML")
## End(Not run)