HatchingSuccess.fit {embryogrowth} | R Documentation |
Fit a hatching success model to data using maximum likelihood
Description
Set of functions to study the hatching success.
The first version of the model was published in:
Laloë, J.-O., Monsinjon, J., Gaspar, C., Touron, M., Genet, Q., Stubbs, J., Girondot, M.
& Hays, G.C. (2020) Production of male hatchlings at a remote South Pacific green sea turtle
rookery: conservation implications in a female-dominated world. Marine Biology, 167, 70.
The version available here is enhanced by using a double flexit model rather than a double
logistic model. The flexit model is described here:
Abreu-Grobois, F.A., Morales-Mérida, B.A., Hart, C.E., Guillon, J.-M., Godfrey, M.H.,
Navarro, E. & Girondot, M. (2020) Recent advances on the estimation of the thermal
reaction norm for sex ratios. PeerJ, 8, e8451.
Usage
HatchingSuccess.fit(
par = NULL,
data = stop("data must be provided"),
fixed.parameters = NULL,
column.Incubation.temperature = "Incubation.temperature",
column.Hatched = "Hatched",
column.NotHatched = "NotHatched",
hessian = TRUE
)
Arguments
par |
A set of parameters. |
data |
A dataset in a data.frame with a least three columns: Incubation.temperature, Hatched and NotHatched |
fixed.parameters |
A set of parameters that must not be fitted. |
column.Incubation.temperature |
Name of the column with incubation temperatures |
column.Hatched |
Name of the column with hatched number |
column.NotHatched |
Name of the column with not hatched number |
hessian |
Should Hessian matrix be estimated? |
Details
HatchingSuccess.fit fits a hatching success model to data
Value
Return a object of class HatchingSuccess
Author(s)
Marc Girondot
See Also
Other Hatching success:
HatchingSuccess.MHmcmc_p()
,
HatchingSuccess.MHmcmc()
,
HatchingSuccess.lnL()
,
HatchingSuccess.model()
,
logLik.HatchingSuccess()
,
nobs.HatchingSuccess()
,
plot.HatchingSuccess()
,
predict.HatchingSuccess()
Examples
## Not run:
library(embryogrowth)
totalIncubation_Cc <- subset(DatabaseTSD,
Species=="Caretta caretta" &
Note != "Sinusoidal pattern" &
!is.na(Total) & Total != 0)
par <- c(S.low=0.5, S.high=0.3,
P.low=25, deltaP=10, MaxHS=0.8)
g.logistic <- HatchingSuccess.fit(par=par, data=totalIncubation_Cc)
HatchingSuccess.lnL(par=g.logistic$par, data=totalIncubation_Cc)
plot(g.logistic)
par <- c(S.low=0.5, S.high=0.3,
P.low=25, deltaP=10,
K1.low=1, K2.low=-1, K1.high=1, K2.high=-1,
MaxHS=0.8)
g.flexit <- HatchingSuccess.fit(par=par, data=totalIncubation_Cc)
HatchingSuccess.lnL(par=g.flexit$par, data=totalIncubation_Cc)
compare_AICc(logistic=g.logistic, flexit=g.flexit)
plot(x=g.logistic, what = c("observations", "ML", "CI"), replicates=10000)
pMCMC <- HatchingSuccess.MHmcmc_p(result = g.logistic, accept = TRUE)
MCMC <- HatchingSuccess.MHmcmc(result = g.logistic, parametersMCMC = pMCMC,
n.iter = 100000,
adaptive = TRUE)
plot(MCMC, parameters = "S.low")
plot(MCMC, parameters = "S.high")
plot(MCMC, parameters = "P.low")
plot(MCMC, parameters = "deltaP")
plot(MCMC, parameters = "MaxHS")
plot(x=g.logistic, what = c("observations", "ML", "CI"),
replicates=10000, resultmcmc=MCMC)
####### Exemple with Chelonia mydas
totalIncubation_Cm <- subset(DatabaseTSD,
Species=="Chelonia mydas" &
Note != "Sinusoidal pattern" &
!is.na(Total) & Total != 0 &
!is.na(NotHatched) & !is.na(Hatched))
totalIncubation_Cm$NotHatched <- totalIncubation_Cm$NotHatched +
ifelse(!is.na(totalIncubation_Cm$Undeveloped), totalIncubation_Cm$Undeveloped, 0)
plot(x=totalIncubation_Cm$Incubation.temperature,
y=totalIncubation_Cm$Hatched/totalIncubation_Cm$Total, bty="n", las=1,
xlab="Constant incubation temperature", ylab="Proportion of hatching")
par <- c(S.low=0.5, S.high=0.3,
P.low=25, deltaP=10, MaxHS=0.8)
g.logistic <- HatchingSuccess.fit(par=par, data=totalIncubation_Cm)
plot(g.logistic)
pMCMC <- HatchingSuccess.MHmcmc_p(g.logistic, accept=TRUE)
mcmc <- HatchingSuccess.MHmcmc(result=g.logistic, parameters = pMCMC,
adaptive=TRUE, n.iter=100000, trace=1000)
par <- as.parameters(mcmc)
par <- as.parameters(mcmc, index="median")
plot(mcmc, parameters=c("P.low"))
plot(mcmc, parameters=c("deltaP"))
plot(mcmc, parameters=c("S.low"))
plot(mcmc, parameters=c("S.high"))
plot(mcmc, parameters=c("MaxHS"))
plot(g.logistic, resultmcmc=mcmc, what = c("observations", "CI"))
## End(Not run)