GRTRN_MHmcmc {embryogrowth} | R Documentation |
Metropolis-Hastings algorithm for Embryo Growth Rate Thermal Reaction Norm
Description
Run the Metropolis-Hastings algorithm for data.
The number of iterations is n.iter+n.adapt+1
because the initial likelihood is also displayed.
I recommend that thin=1 because the method to estimate SE uses resampling.
If initial point is maximum likelihood, n.adapt = 0 is a good solution.
To get the SE of the point estimates from result_mcmc <- GRTRN_MHmcmc(result=try)
, use:
result_mcmc$SD
coda
package is necessary for this function.
The parameters intermediate
and filename
are used to save intermediate results every 'intermediate' iterations (for example 1000). Results are saved in a file named filename
.
The parameter previous is used to indicate the list that has been save using the parameters intermediate and filename. It permits to continue a mcmc search.
These options are used to prevent the consequences of computer crash or if the run is very very long and processes with user limited time.
Usage
GRTRN_MHmcmc(
result = NULL,
n.iter = 10000,
parametersMCMC = NULL,
n.chains = 1,
n.adapt = 0,
thin = 1,
trace = NULL,
traceML = FALSE,
parallel = TRUE,
adaptive = FALSE,
adaptive.lag = 500,
adaptive.fun = function(x) {
ifelse(x > 0.234, 1.3, 0.7)
},
intermediate = NULL,
filename = "intermediate.Rdata",
previous = NULL
)
Arguments
result |
An object obtained after a SearchR fit |
n.iter |
Number of iterations for each step |
parametersMCMC |
A set of parameters used as initial point for searching with information on priors |
n.chains |
Number of replicates |
n.adapt |
Number of iterations before to store outputs |
thin |
Number of iterations between each stored output |
trace |
TRUE or FALSE or period, shows progress |
traceML |
TRUE or FALSE to show ML |
parallel |
If true, try to use several cores using parallel computing |
adaptive |
Should an adaptive process for SDProp be used |
adaptive.lag |
Lag to analyze the SDProp value in an adaptive content |
adaptive.fun |
Function used to change the SDProp |
intermediate |
Period for saving intermediate result, NULL for no save |
filename |
If intermediate is not NULL, save intermediate result in this file |
previous |
Previous result to be continued. Can be the filename in which intermediate results are saved. |
Details
GRTRN_MHmcmc runs the Metropolis-Hastings algorithm for data (Bayesian MCMC)
Value
A list with resultMCMC being mcmc.list object, resultLnL being likelihoods and parametersMCMC being the parameters used
Author(s)
Marc Girondot
Examples
## Not run:
library(embryogrowth)
data(nest)
formated <- FormatNests(nest)
# The initial parameters value can be:
# "T12H", "DHA", "DHH", "Rho25"
# Or
# "T12L", "T12H", "DHA", "DHH", "DHL", "Rho25"
############################################################################
pfixed <- c(rK=1.208968)
M0 = 0.3470893
############################################################################
# 4 parameters
############################################################################
x c('DHA' = 109.31113503282113, 'DHH' = 617.80695919563857,
'T12H' = 306.38890489505093, 'Rho25' = 229.37265815800225)
resultNest_4p_SSM <- searchR(parameters=x, fixed.parameters=pfixed,
temperatures=formated, integral=integral.Gompertz, M0=M0,
hatchling.metric=c(Mean=39.33, SD=1.92))
data(resultNest_4p_SSM)
plot(resultNest_4p_SSM, xlim=c(0,70), ylimT=c(22, 32), ylimS=c(0,45), series=1,
embryo.stages="Caretta caretta.SCL")
############################################################################
pMCMC <- TRN_MHmcmc_p(resultNest_4p_SSM, accept=TRUE)
# Take care, it can be very long; several days
resultNest_mcmc_4p_SSM <- GRTRN_MHmcmc(result=resultNest_4p_SSM,
adaptive = TRUE,
parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,
n.adapt = 0, thin=1, trace=TRUE)
# The SDProp in pMCMC at the beginning of the Markov chain can
# be considered as non-optimal. However, the values at the end
# of the Markoc chain are better due to the use of the option
# adaptive = TRUE. Then a good strategy is to run again the MCMC
# with this final set:
pMCMC[, "SDProp"] <- resultNest_mcmc_4p_SSM$parametersMCMC$SDProp.end
# Also, take the set of parameters fitted as maximim likelihood
# as initial set of value
pMCMC[, "Init"] <- as.parameters(resultNest_mcmc_4p_SSM)
# Then I run again the MCMC; it will ensure to get the optimal distribution
resultNest_mcmc_4p_SSM <- GRTRN_MHmcmc(result=resultNest_4p_SSM,
adaptive = TRUE,
parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,
n.adapt = 0, thin=1, trace=TRUE)
data(resultNest_mcmc_4p_SSM)
out <- as.mcmc(resultNest_mcmc_4p_SSM)
# This out can be used with coda package
# Test for stationarity and length of chain
require(coda)
heidel.diag(out)
raftery.diag(out)
# plot() can use the direct output of GRTRN_MHmcmc() function.
plot(resultNest_mcmc_4p_SSM, parameters=1, xlim=c(0,550))
plot(resultNest_mcmc_4p_SSM, parameters=3, xlim=c(290,320))
# summary() permits to get rapidly the standard errors for parameters
# They are store in the result also.
se <- result_mcmc_4p_SSM$SD
# the confidence interval is better estimated by:
apply(out[[1]], 2, quantile, probs=c(0.025, 0.975))
# The use of the intermediate method is as followed;
# Here the total mcmc iteration is 10000, but every 1000, intermediate
# results are saved in file intermediate1000.Rdata:
resultNest_mcmc_4p_SSM <- GRTRN_MHmcmc(result=resultNest_4p_SSM,
parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,
n.adapt = 0, thin=1, trace=TRUE,
intermediate=1000, filename="intermediate1000.Rdata")
# If run has been stopped for any reason, it can be resumed with:
resultNest_mcmc_4p_SSM <- GRTRN_MHmcmc(previous="intermediate1000.Rdata")
# Example to use of the epsilon parameter to get confidence level
resultNest_4p_epsilon <- resultNest_4p
resultNest_4p_epsilon$fixed.parameters <- c(resultNest_4p_epsilon$par,
resultNest_4p_epsilon$fixed.parameters)
resultNest_4p_epsilon$par <- c(epsilon = 0)
pMCMC <- TRN_MHmcmc_p(resultNest_4p_epsilon, accept = TRUE)
resultNest_mcmc_4p_epsilon <- GRTRN_MHmcmc(result = resultNest_4p_epsilon,
n.iter = 10000, parametersMCMC = pMCMC,
n.chains = 1, n.adapt = 0, thin = 1, trace = TRUE, parallel = TRUE)
data(resultNest_mcmc_4p_epsilon)
plot(resultNest_mcmc_4p_epsilon, parameters="epsilon", xlim=c(-11, 11), las=1)
plotR(resultNest_4p_epsilon, SE=c(epsilon = unname(resultNest_mcmc_4p_epsilon$SD)),
ylim=c(0, 3), las=1)
## End(Not run)