dirichlet_tree {elections.dtree} | R Documentation |
Create a Dirichlet-tree for modelling ranked ballots
Description
A dirichlet_tree
object represents a Dirichlet-tree distribution
on ballots. By specifying the tree structure for the ranked ballots,
the Dirichlet-tree is initialized with the same prior structure described by
Everest et al. (2022). There are
methods provided for observing data (to obtain a posterior distribution)
along with methods to sample election outcomes and sets of ballots from
the posterior predictive distribution.
Format
An R6Class
generator object.
Active bindings
a0
Gets or sets the
a0
parameter for the Dirichlet-tree.min_depth
Gets or sets the
min_depth
parameter for the Dirichlet-tree.max_depth
Gets or sets the
max_depth
parameter for the Dirichlet-tree.vd
Gets or sets the
vd
parameter for the Dirichlet-tree.
Methods
Public methods
Method new()
Create a new dirichlet_tree
prior distribution with the specified
tree structure. See Everest et al. (2022)
for further details.
Usage
dirichlet_tree$new( candidates, min_depth = 0, max_depth = length(candidates) - 1, a0 = 1, vd = FALSE )
Arguments
candidates
A character vector, with each element (must be unique) representing a single candidate.
min_depth
The minimum number of candidates which must be specified for a valid ballot in the election.
max_depth
The maximum number of candidates which can be specified for a valid ballot in the election.
a0
The prior parameter for the distribution.
vd
A flag which, when
TRUE
, employs a parameter structure which reduces to a regular Dirichlet distribution as described by Everest et al. (2022).
Returns
A new dirichlet_tree
prior.
Examples
dtree <- dirichlet_tree$new(candidates = LETTERS, a0 = 1., min_depth = 1)
Method print()
print
shows some details of the distribution and its parameters.
Usage
dirichlet_tree$print()
Returns
The dirichlet_tree
object.
Method update()
Updates the dirichlet_tree
object with observations of ballots.
This updates the parameter structure of the tree to yield the posterior
Dirichlet-tree, as described in
Everest et al. (2022).
Usage
dirichlet_tree$update(ballots)
Arguments
ballots
A set of ballots of class 'prefio::preferences' or 'prefio::aggregated_preferences' to observe. The ballots should not contain any ties, but they may be incomplete.
Returns
The dirichlet_tree
object.
Examples
ballots <- prefio::preferences( t(c(1, 2, 3)), format = "ranking", item_names = LETTERS[1:3] ) dirichlet_tree$new( candidates = LETTERS[1:3] )$update(ballots)
Method reset()
Resets the dirichlet_tree
observations to revert the
parameter structure back to the originally specified prior.
Usage
dirichlet_tree$reset()
Returns
The dirichlet_tree
object.
Examples
ballots <- prefio::preferences( t(c(1, 2, 3)), format = "ranking", item_names = LETTERS[1:3] ) dtree <- dirichlet_tree$new( candidates = LETTERS )$update(ballots) print(dtree) dtree$reset() print(dtree)
Method sample_posterior()
Draws sets of ballots from independent realizations of the Dirichlet-tree posterior, then determines the probability for each candidate being elected by aggregating the results of the social choice function. See Everest et al. (2022) for details.
Usage
dirichlet_tree$sample_posterior( n_elections, n_ballots, n_winners = 1, replace = FALSE, n_threads = NULL )
Arguments
n_elections
An integer representing the number of elections to generate. A higher number yields higher precision in the output probabilities.
n_ballots
An integer representing the total number of ballots cast in the election.
n_winners
The number of candidates elected in each election.
replace
A boolean indicating whether or not we should replace our sample in the monte-carlo step, drawing the full set of election ballots from the posterior
n_threads
The maximum number of threads for the process. The default value of
NULL
will default to 2 threads.Inf
will default to the maximum available, and any value greater than or equal to the maximum available will result in the maximum available.
Returns
A numeric vector containing the probabilities for each candidate being elected.
Examples
ballots <- prefio::preferences( t(c(1, 2, 3)), format = "ranking", item_names = LETTERS[1:3] ) dirichlet_tree$new( candidates = LETTERS, a0 = 1., min_depth = 3, max_depth = 6, vd = FALSE )$update( ballots )$sample_posterior( n_elections = 10, n_ballots = 10 )
Method sample_predictive()
sample_predictive
draws ballots from a multinomial distribution
with ballot probabilities obtained from a single realization of the
Dirichlet-tree posterior on the ranked ballots. See
Everest et al. (2022) for details.
Usage
dirichlet_tree$sample_predictive(n_ballots)
Arguments
n_ballots
An integer representing the total number of ballots cast in the election.
Returns
A prefio::preferences
object containing n_ballots
ballots drawn from a single realisation of the posterior Dirichlet-tree.
Examples
ballots <- prefio::preferences( t(c(1, 2, 3)), format = "ranking", item_names = LETTERS[1:3] ) dirichlet_tree$new( candidates = LETTERS, a0 = 1., min_depth = 3, max_depth = 6, vd = FALSE )$update( ballots )$sample_predictive( n_ballots = 10 )
References
Everest F, Blom M, Stark PB, Stuckey PJ, Teague V, Vukcevic D (2023). “Ballot-Polling Audits of Instant-Runoff Voting Elections with a Dirichlet-Tree Model.” In Computer Security. ESORICS 2022 International Workshops, 525–540. ISBN 978-3-031-25460-4..
Everest F, Blom M, Stark PB, Stuckey PJ, Teague V, Vukcevic D (2022). “Auditing Ranked Voting Elections with Dirichlet-Tree Models: First Steps.” doi:10.15157/diss/021..
Examples
## ------------------------------------------------
## Method `dirichlet_tree$new`
## ------------------------------------------------
dtree <- dirichlet_tree$new(candidates = LETTERS, a0 = 1., min_depth = 1)
## ------------------------------------------------
## Method `dirichlet_tree$update`
## ------------------------------------------------
ballots <- prefio::preferences(
t(c(1, 2, 3)),
format = "ranking",
item_names = LETTERS[1:3]
)
dirichlet_tree$new(
candidates = LETTERS[1:3]
)$update(ballots)
## ------------------------------------------------
## Method `dirichlet_tree$reset`
## ------------------------------------------------
ballots <- prefio::preferences(
t(c(1, 2, 3)),
format = "ranking",
item_names = LETTERS[1:3]
)
dtree <- dirichlet_tree$new(
candidates = LETTERS
)$update(ballots)
print(dtree)
dtree$reset()
print(dtree)
## ------------------------------------------------
## Method `dirichlet_tree$sample_posterior`
## ------------------------------------------------
ballots <- prefio::preferences(
t(c(1, 2, 3)),
format = "ranking",
item_names = LETTERS[1:3]
)
dirichlet_tree$new(
candidates = LETTERS,
a0 = 1.,
min_depth = 3,
max_depth = 6,
vd = FALSE
)$update(
ballots
)$sample_posterior(
n_elections = 10,
n_ballots = 10
)
## ------------------------------------------------
## Method `dirichlet_tree$sample_predictive`
## ------------------------------------------------
ballots <- prefio::preferences(
t(c(1, 2, 3)),
format = "ranking",
item_names = LETTERS[1:3]
)
dirichlet_tree$new(
candidates = LETTERS,
a0 = 1.,
min_depth = 3,
max_depth = 6,
vd = FALSE
)$update(
ballots
)$sample_predictive(
n_ballots = 10
)